

JD 590, chapter 5, appendix 5a, rev. 0, 01.01.10

NES	TECHNICAL SPECIFICATION	TS 02
NORDIC ELECTRIC		PAGES: 87
POWER CO- OPERATION	FROM THE NES GROUP	ENCLOSURES: 9
		DATE: 01.07.2009

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles

Page 2(42)

TABLE OF CONTENTS

1		EXECUTIVE SUMMARY	4	•
	1.1	GENERAL CHARACTERISTICS.	. 4	
	12	TECHNICAL REQUIREMENTS	4	
	1.2.1	Signal interference and telecommunication	4	!
	1.2.2	Power supply compatibility	5	í
	1.3	Approval Procedures and Tests	6	,
	1.4	Deliverables	7	/
2		INTRODUCTION	8	2
4			0	
	2.1	Abstract	8	ļ
	2.2	ABOUT THIS DOCUMENT	9	1
	2.2.1	Structure	9	1
	2.2.2	Validity	9	1
	2.2.3	Responsibility	9	1
	2.2.4	Coordination between sections and document versions	9	1
	2.2.5	National differences	9	1
	2.2.6	Accuracy	10	1
	2.3	ABBREVIATIONS AND DEFINITIONS	10]
	2.3.1	Abbreviations	10	1
	2.3.2	Definitions	11	
	2.4	SCOPE	12	r
	2.5	GENERAL INFORMATION ABOUT THE INFRASTRUCTURE	14	
	2.5.1	General	14	
	2.5.2	Norway	14	
	2.5.3	Sweden	15	
	2.6	REVISION HISTORY	16	I
3		SIGNALLING SYSTEMS AND TELECOMMUNICATION	17	'
	3.1	References	17	,
	3.1.1	Normative references	17	,
	3.1.2	Other references	18	,
	3.2	COMPATIBILITY REQUIREMENTS	19)
	3.2.1	S1: DC track circuits	19	1
	3.2.2	S2: 95 Hz and 105 Hz track circuits (Norway only)	22	,
	3.2.3	S3: TI 21 track circuits (Norway only)	23	ļ
	3.2.4	S4: FTGS track circuits (Norway only)	24	!
	3.2.5	S5: Telecommunication disturbances and psophometric currents	26	í
	3.2.6	S6: Broad-band interference (Norway only)	27	'
	3.2.7	S7: Radiated interference	28	,
	3.2.8	S8: Outside antennas on vehicles	29)
	3.2.9	S9: Resistance between wheelsets	30	1
	3.3	VALIDATION AND TESTS	31	
	3.3.1	Requirements prior to tests	31	
	3.3.2	Coordination with tests regarding compatibility with the power supply	32	1
	3.3.3	General test program	33	1
	3.3.4	Test details	34	!
	3.3.5	Measurement instrumentation and methods	37	,
	3.4	DOCUMENTATION	41	
	3.4.1	General	41	
4		POWER SUPPLY	42	

Jernbaneverket

BANVERKET \geq

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document $\mathrm{TS02}$

ADDENDICES	51 DA CES
ALLENDICES	

APP. 1:	INFRASTRUCTURE DATA AND RELATED INFORMATION 27 PAGES
APP. 2:	NETWORK MAP OF NORWAY 1 PAGE
APP. 3:	NETWORK MAP OF SWEDEN 2 PAGES
APP. 4:	ADDITIONAL INFORMATION FOR STABILITY STUDIES 4 PAGES
APP. 5:	DYNAMIC BEHAVIOUR FOR ROTARY CONVERTERS 19 PAGES
APP. 6:	TYPICAL CROSS SECTION OF A BOOSTER TRANSFORMER LINE IN SWEDEN 1 PAGE
APP. 7:	CROSS SECTION OF EXISTING AT-SYSTEM LINES IN SWEDEN 1 PAGE
APP. 8:	CROSS SECTION OF NEW STANDARD FOR AT-SYSTEM LINES IN SWEDEN
APP. 9:	PSOPHOMETRIC WEIGHTING FACTORS ACCORDING TO ITU-T 2 PAGES

1 EXECUTIVE SUMMARY

The international standards EN 50 121, EN 50 163, EN 50 238, EN 50 388, and others, define the framework for the electrical compatibility between the rolling stock and the infrastructure systems on electrified railways. However, since the infrastructure systems for historical reasons are not equal in all countries, each national rail administration must define the detailed application of the standards in that country, and specify additional requirements in fields that are not covered by the standards. The present document defines the details of the electrical railway infrastructure in Norway and Sweden, and specifies the electrical compatibility requirements for the rolling stock. In general, these requirements are in accordance with the relevant standards, but certain technical differences exist, also compared to the systems in the other 16.7 Hz countries Germany, Austria, and Switzerland.

1.1 General Characteristics

The following is a prioritized list of the problems and general system characteristics that have typically caused train suppliers the greatest difficulties when introducing a new vehicle in the Norwegian and/or Swedish railway network:

- 1. Low frequency power oscillations, when supplied from rotating converters
- 2. High levels of line voltage distortion, in particular the 3rd and 5th voltage harmonics, and high crest voltages
- 3. Regenerative braking and line voltage limitation
- 4. Power factor control for improvement of the power capacity of weak supply lines
- 5. The weak power supply in general, characterized by long feeding distances, singletrack lines, small rotating as well as static 50 Hz to 16 2/3 Hz converter stations, and a high number of phase-angle controlled vehicles

1.2 Technical Requirements

Ref.	System	Requirement / interference limit	Details
S1	DC (S only)	25 Å, and limits for the DC component at	3.2.1
		transformer inrush.	
S2	95 Hz and 105 Hz (N only)	1.00 A. Monitoring required.	3.2.2
S3	TI21 track circuits (N only)		3.2.3
	16 bands 1532 Hz to 2610 Hz	TBD A	
S4	FTGS track circuits (N only)		3.2.4
	4 bands 4.75 kHz to 6.25 kHz	1.00 A	
	8 bands 9.5 kHz to 16.5 kHz	0.50 A	
S5	Psophometric currents	1.50 A	3.2.5
S6	Broad-band (N only)		3.2.6
	TBD-7 kHz	1.00 A	
	7-9 kHz	0.50 A	
	> 9 kHz	0.33 A	
S7	Radiated interference	According to EN 50 121-3-1	3.2.7
S 8	Outside antennas	According to EN and BVS standards.	3.2.8
S9	Resistance between wheelsets	< 0.1 Ω.	3.2.9

1.2.1 Signal interference and telecommunication

Page 5(42)

1.2.2 Power supply compatibility

Ref.	System	Characteristics / requirements	Details
P1	Line voltage	$U_{min2} = 10 \text{ kV}$ (N only). Voltage jumps may occur at any	
	levels	level between U_{min2} and U_{max2} .	
P2	Line voltage	The line frequency is 16 2/3 Hz. The railway power	
	frequency	supply is synchronized to the 50 Hz mains.	
P3	Line voltage	The line voltage may be heavily distorted, with up to 5 kV	4.3.3
	distortion	3 rd and 5 th harmonic. The crest voltage may exceed 30 kV.	
P4	Neutral sections	Procedural requirements for the loco driver.	4.3.4
P5	Power factor	The limits for $cos(\phi)$ are more strict, compared to EN 50	4.3.5
	$(\cos(\varphi))$	388. It is generally only possible to regenerate any	
		significant power back into the weak supply system, if a	
		power factor $(\cos(\varphi))$ control is applied.	
P6	Maximum line	Procedural requirements for the loco driver.	4.3.6
	current limitation		
P7	Current or power	The power control specified by EN 50 388 is of particular	4.3.7
	control at low	importance due to the weak supply.	
	line voltage		
P8	Low frequency	The rotating converters have a poorly damped eigen-	4.3.8
	power	frequency at approximately 1.6 Hz. The vehicles must not	
	oscillations	cause the system to become unstable at any condition.	
P9	Electrical	The input admittance of the vehicles must be passive at all	
	resonance	frequencies > 90 Hz.	
D10	stability	The second and the second	
P10	'10 Current I he limits for the 3^{44} , 5^{44} , 7^{44} , and 9^{44} current harmonic are		4.3.10
	harmonics	5.0%, $3.0%$, $3.0%$, and $3.0%$, respectively, of the rated	
D11	D 1	current of the vehicle.	
PII	Kelay	In accordance with EN 50 388.	4.3.11
D12	Transformer	The near impush summation $h_{0} < 2.00 \text{ k}$	1 2 10
P12	inmuch (AC)	The peak infush current must be < 2.00 kA.	4.3.12
D12	Degenerative	The vehicle must not equip the line veltage to increase	1212
P13	broking	The vehicle must not cause the line voltage to increase above $17.5 \text{ kV}(S)$ or $18.0 \text{ kV}(N)$ in regenerative braking	4.3.13
	Draking	The vehicle must not cause the voltage locally at other	
		types of vehicles to exceed 17.5 kV to any greater extent	
		types of venicles to exceed 17.5 KV to any greater extent than what is seen in the existing system (S only)	
P14	Train heating	In accordance with LIIC standards. Inrush tests required	4314
P15	Energy	The ERESS (European Railway Energy Settlement	4315
1 10	measurement	System) system is used	
P16	Other electrical	Certain requirements regarding equipment in the driver's	
1.10	equipment	cab.	
P17	Ice on the	Significant DC levels have been measured in the primary 4	
	overhead line	currents of existing vehicles at OHL ice conditions.	

1.3 Approval Procedures and Tests

The table below outlines the tests that are required for approval. The time needed for the tests depend on a) the number of different operation modes for the vehicle, and b) the free time on the closed track the actual time periods for testing. Most tests must be performed night-time. Experience shows that the categories T1 and T2 require at least two nights each plus transport time, and category T3 1-2 days. In Sweden, category T4+T5 is generally also one day due to the transport. It is expected that category T6 is performed at the suppliers workshop or similar facilities.

It should be noted that these approximate time indications are valid only for a vehicle that is *in its final and approvable state, with all software functions and all parameters frozen.* Any tests required for the supplier's own purposes (i.e., to make the vehicle approvable, or for fine-tuning of software) come in additional and up front.

The test categories T1, T2, and T4 may be performed in either country. The mixed traffic tests T3 must be performed in the country/countries where the vehicle will operate. Test T5 must be performed in Sweden. The tests T6 may be performed anywhere with 16 2/3 Hz or 16.7 Hz supply. For an approval in Norway, parallel measurements in the substation must be made during test T1.

Cat.	Condition	Suitable test sites	Scope and train operation	Max. line speed
T1	Closed track,	Alvesta-Emmaboda (S)	S1-S6 (LOOP)	< 130
	rotating converters	Hønefoss-Nesbyen (N)	P1, P2, P5-P10, P13 (ABAB,	km/h
			ARO)	
T2	Closed track,	Eskilstuna-Södertälje	S1-S6 (LOOP)	200 km/h
	static converters	(S)	P1, P2, P5-P10, P13 (ABAB,	
		Gardermoen line (N)	ARO, voltage jump)	
T3	Mixed traffic	Borlänge area (S)	S1-S6, P1-P3, P5-P10, P13	
		Oslo area (N)	(Normal operation)	
T4	Transformer inrush	Ockelbo (S)	P12	
	(peak AC)	Oslo S (N)		
T5	Transformer inrush	Ockelbo (S)	S1	
	(DC, S only)			
T6	Other tests	Any possible	S7, P14	
T7	Non-test approval	N/A	S8, S9, P4, P11, P15-P17	

Three different acceleration-brake operation sequences are defined: LOOP, ABAB, and ARO (please refer to section 3.3.4 and 4.4.4).

All vehicles must perform tests up to their speed limit during test category T2. Locomotives must be loaded by a reasonably heavy train (\approx 1-2 t per kN max. tractive effort, or \approx 50-100 t per MW max. power, whichever is the greater) during all tests T1 and T3, in order to create realistic acceleration times. During tests T2, a somewhat lighter load may be used (some 25% of the values above).

1.4 Deliverables

The supplier must deliver the following documents and other information regarding electrical compatibility.

Before testing:

- Clause-by-clause comments to the present specification section 3 and 4, explaining how the technical requirements are met
- Calculated, previously measured, or otherwise estimated signaling interference and psophometric current levels
- The input admittance versus frequency characteristics
- A simulation study regarding low frequency power oscillations
- Descriptions and characteristics of key functions, such as the current or power control at low line voltages, voltage limitation at regenerative braking, $\cos(\phi)$ -control, etc.
- Calculations regarding the voltages locally at other types of vehicles (S only)
- Design descriptions, main circuit diagrams, data sheets, and other relevant general information
- Test reports and other documentation showing that the vehicle meets the radiated interference requirements of EN 50 121-3
- Documentation that the vehicle is compatible with relevant requirements outside the field of EMC (such as running dynamics, kinematic envelope, braking performance, etc.), to obtain track access for the EMC tests
- A test plan, including descriptions of the instrumentation and data analysis

After testing:

• The test report, including individual conformity statements for each requirement S1-S9 and P1-P16, and including explanations, references to the detailed test results and printouts, and so on.

Before operation:

• Vehicle data for power system studies

2 INTRODUCTION

2.1 Abstract

The international standards (EN, IEC, UIC, etc.) that deal with electromagnetic and functional compatibility between railway vehicles and infrastructure, are kept on a quite general level and do not cover all aspects of relevance for each individual country and national rail administration. Typically, different signalling systems are used in different countries, meaning that specific national requirements apply in addition to the common standards.

In Norway and Sweden, not only the signalling systems, but also the power supply differs significantly in comparison with other 16.7 Hz countries.

It is the objective of the present document to compile all relevant information and all requirements that apply to rolling stock used in Norway and Sweden, with respect to compatibility with the electrical infrastructure and other vehicles; i.e. the power supply, existing rolling stock, and infrastructure systems such as track signalling circuits, telecommunication lines, etc.

Jernbaneverket and Banverket are committed to harmonize, as far as possible, not only their technical requirements, but also their requirements regarding approval procedures and tests. It must be noted, however, that due to a number of technical differences between the two countries, this objective cannot be fulfilled for all requirements.

The document is first and foremost based on the standards EN 50 121 part 1 to 5, EN 50 163, EN 50 238 and EN 50 388. This however does not imply that other standards are not valid.

The document concentrates on the special national conditions that are valid for Norway or Sweden, and on topics that are not completely covered by international standards.

The tests described in the document are considered being type tests. This means that if tests are performed in one country, and the test procedures and conditions are representative also for the other country, then the tests, the recorded data, and the results may also be used for the performance evaluation and approval in the other country, even if the limits are different (i.e., tests in one country can provide data also for the other country).

Requirements regarding the mechanical interaction between the pantograph and the contact line are presented in other documents. Furthermore, the requirements on train control systems, such as ATC (= Automatic Train Control) or ERTMS, and interference with train radio and digital systems such as PCM, ISDN, etc., are not included in this document.

2.2 About this document

2.2.1 Structure

This document exists in three versions:

- One full version with all sections 1-4. This version is an appendix to Banverkets document BVS 543:19300.
- One version with the sections 1-3 only, and section 4 left unused. This version is an appendix to chapter 5 in Jernbaneverkets document JD 590.
- One version with the sections 1, 2, and 4 only, and section 3 left unused. This version is an appendix to chapter 4 in Jernbaneverkets document JD 590.

2.2.2 Validity

Section 1 and 2 of this document are for information only. The formal and valid requirements are given in section 3 and 4. In case of any conflicts, section 3 and 4 take precedence over section 1 and 2.

2.2.3 Responsibility

Section 3 of this document is under the responsibility of the signalling departments at Jernbaneverket and Banverket, while the power supply departments are responsible for section 4.

2.2.4 Coordination between sections and document versions

Certain parts of section 3 and 4 are harmonised and to some extent equal, in particular the requirements regarding testing. These sections are marked with a vertical line in the left margin, as shown here. Any changes to these sections should be coordinated between the signalling and the power supply departments.

2.2.5 National differences

Most requirements apply equally in the two countries. If a requirement is valid solely in one country, this is highlighted with a (Norway only) or (Sweden only) in the level three header for that requirement. Sometimes (e.g., in tables), the shorter (N only) or (S only) is used.

If a requirement is different in the two countries, the following identification is made:

NORWAY AND SWEDEN:

Here the parts of the requirement that are common to the two countries are listed. If there are no common requirements, this heading is not used.

NORWAY:

Here the requirements that are specific to Norway are listed.

SWEDEN:

Here the requirements that are specific to Sweden are listed. The "Sweden only"-section goes on until the next level two, level three, or level four heading, whichever is first.

2.2.6 Accuracy

If a requirement is quantitative, i.e. there is a numerical limit; the accuracy of the limit is given by the number of digits used for the requirement.

2.3 Abbreviations and Definitions

2.3.1 Abbreviations

- ABAB Operation sequence (see 4.4.4)
- ABS Absolute value
- AC Alternating current
- A/D Analog to digital conversion
- ARO Operation sequence (see 4.4.4)
- AT Autotransformer
- ATC Automatic train control (called ATP in most countries)
- ATP Automatic train protection (called ATC in the Nordic countries)
- BP Band-pass
- BT Booster transformer
- BW Butterworth
- bw Bandwidth
- DAT Digital audio tape
- DC Direct current
- EMC Electromagnetic compatibility
- EMI Electromagnetic interference
- f_C Centre frequency
- FFT Fast fourier transform
- FTGS Type of track circuit
- GPS Global positioning system
- ID (Data recording) idendity
- IIR Infinite impulse response
- I_N Rated current
- LOOP Operation sequence (see 3.3.4)
- N Norway
- N/A Not applicable
- OHL Overhead (contact) line
- P1-P17 Compatibility requirements, power supply systems

Page 11(42)

- PWM Pulse width modulation
- RMS Root-mean-square
- RSS Root-sum-square
- S Sweden
- S1-S9 Compatibility requirements, signalling and telecommunication systems
- T1-T7 Test categories
- TBD To be defined
- THD Total harmonic distortion
- TI 21 Type of track circuit

2.3.2 Definitions

Bandwidth	In accordance with EN 50 238
Bin	Output from a FFT. For example, a FFT with a 1 s window length produces bins at the frequencies 0 Hz (DC), 1 Hz, 2 Hz,
Closed track	A line section that is single-end fed, and where no other rail vehicles are activated or in operation
Crest voltage	The highest value within one period of the rectified AC voltage. For an ideal sinusoidal voltage, the crest value equals $\sqrt{2}$ times the RMS value.
Fault mode	Degraded vehicle operation mode with one or more subsystems (converter, filter, or similar) cut-out
Hanning	Weight function used in combination with the FFT, in order to reduce the effect of transients
Normal operation	Vehicle operation mode with all subsystems in intended operation
Quasi-stationary	An operation condition where the variables (e.g., RMS voltage or current) vary so slowly that no oscillations or other dynamic effects are triggered
Rated current	The line current drawn by the vehicle when operating at full power at the nominal voltage of 15.0 kV
RMS	Root-Mean-Square. Please notice that different window lengths are used for different purposes. Generally, the window length is defined as a part of each specific requirement
Spectral leakage	The phenomenon that a FFT bin at a certain frequency is "contaminated" with energy originating from signal components at the frequencies of the neighbouring bins. This is an effect of the Hanning window
Window	Time duration over which data is analysed, e.g., 60 ms or 1 s

2.4 Scope

NORWAY AND SWEDEN:

This document is foremost intended for manufacturers or operators who plan:

- A) to specify and design new vehicles for operation in Norway and/or Sweden,
- B) to modify or rebuild already existing vehicles, or
- C) to introduce already existing vehicles that have not previously been operating in Norway or Sweden.

For this purpose, the document provides detailed information about the infrastructure in the two countries. Some of this information is found in connection with the various requirements, but most is given in the attached appendices.

NORWAY:

The validity and the application of the requirements in this document are defined in the JD 590 "Characteristics of the infrastructure" chapter 1 section 1.4.2. The document JD 590 is an overall document that describes the infrastructure and the compatibility requirements in Norway for all relevant fields. This present document concerning electric compatibility is hence a part of JD 590 as:

- Signal interference is treated in JD 590 chapter 5 "Signalling and train control systems"
- Telecommunication is treated in JD 590 chapter 6 "Telematic applications"
- Power supply is treated in JD 590 chapter 4 "Energy"

SWEDEN:

The requirements in this document are valid for:

- First time use of rolling stock or reintroduction of rolling stock that have been considered out of use permanently.
- Rolling stock that is going to be introduced on sections of track not included in current acceptance.
- Changes, both in hardware and software, in rolling stock usage not in compliance with current acceptance.
- Modifications of rolling stock in a way that may affect the compliance with the current acceptance.

This means that the requirements in this document are valid for new electrical traction vehicle and old used vehicles that have not been used in normal operation in Norway or Sweden before. An old vehicle used in Norway is not automatically accepted in Sweden.

The requirements in this document can however be discussed when applied on imported old vehicles, except for the Electrical Safety and requirements regarding signalling circuits and psophometric currents. Requirements regarding signalling circuits are always valid due to safety aspects. Requirements regarding psophometric currents are valid due to effects for third party.

A summary of how and for which rolling stock the requirements are valid is given in the table below:

Category of	Age of the rolling stock			
rolling stock	Vehicle design started after Vehicles designed befor			
	2007-01-01	2007-01-01		
Vehicles specifically designed for use in Sweden only	All requirements are mandatory.	Already accepted, but any rebuilds or modifications should aim for improving compatibility, and must not reduce compatibility. For already accepted vehicles, which are to be put in operation on new lines for which the acceptance is not valid, relevant requirements are valid in order to maintain		
		traffic and not to disturb the electrical infrastructure. Relevant requirement are decided on a case- to-case basis.		
Vehicles designed for cross border operation, or for use also in other countries	Safety requirements and requirements regarding signalling systems and telecommunications are mandatory. Non-compatibilities with other requirements might be accepted on a case-to-case basis, but only if it can be demonstrated that the requirements are in fundamental conflict with technical requirements from other countries of operation.	Safety requirements and requirements regarding signalling systems and telecommunications are mandatory. Non-compatibilities with other requirements might be accepted on a case-to-case basis, but only if it can be demonstrated that a rebuild would be in fundamental conflict with technical requirements from other countries of operation, or if it can be demonstrated that the cost of a rebuild is out of proportion.		
Vehicles originally designed for use in other countries, but imported for future use solely in Sweden	Safety requirements and requirements regarding signalling systems and telecommunications are mandatory. Non-compatibilities with other requirements might be accepted on a case-to-case basis, but only if it can be demonstrated that the cost of a rebuild is out of proportion.	Safety requirements and requirements regarding signalling systems and telecommunications are mandatory. Non-compatibilities with other requirements might be accepted on a case-to-case basis, but only if it can be demonstrated that the cost of a rebuild is out of proportion.		

Table 1. Use of the requirements (Sweden only).

BANVERKET

2.5 General information about the infrastructure

This chapter gives a short introduction to traction power supply systems and track signalling circuits in Norway and Sweden. More specific data about the infrastructure is given as information in APPENDIX 1: Infrastructure data and related information.

2.5.1 General

In Norway and Sweden the earth resistivity is high in comparison to most of the rest of Europe. This has direct an effect on traction power supply design to avoid disturbing other electrical systems.

2.5.2 Norway

In Norway there are 2500 km of electrified railway (2004). The network around the capital Oslo is meshed with both double and single-track lines. Around this centre there are long (> 500 km) single-track lines to other parts of the country. The Norwegian single-phase network is much weaker than in rest of Europe. In some areas the overhead contact line impedance is so large that changes in the power demand from one train may cause voltage variations up to some kilovolts. Both tap changer vehicles, phase controlled vehicles and inverter vehicles with and without filters operate in the network.

The power supply system is of the type 15 kV, 16.7 Hz. It is synchronized with the 50 Hz national grid, i.e. a decentralized system. There is however a small centralized system in the Oslo area consisting of a 55 kV, 16 2/3 Hz single-phase high voltage transmission line fed by one small hydro power station. This system is connected to the contact lines system via 5 substations (which can be located together with rotary converters).

Apart from the small centralized system the power is fed into the traction power supply system by rotary and static (power electronic) converter stations, which convert the energy from 50 Hz, three-phase, to 16 2/3 Hz, single-phase. The number of active converter units in each converter station is adapted to the hourly variation in load demand to allow maintenance and reduce the losses. There is one small hydro power station feeding directly to the overhead contact line system. In normal operation there is often a one-to-one relation between one converter station capacity and load demand form one train. Due to this, low frequency oscillations have often caused severe problems when new vehicles have been introduced.

In normal operation the system is interconnected between the feeding points, but in order to maintain both rail tracks and contact line, sectioning of the system is a common operation mode.

At present, the booster transformer (BT) system, with or without return conductors, is the main feeding system for contact lines in Norway. However, Jernbaneverket plans to build autotransformer (AT) systems for main long distances lines. There are also some series capacitances and one shunt capacitor in the single-phase network in order to reduce inductive contact line impedance, strengthening the voltage and feeding reactive power. The return path for the traction current, regardless of system and apart from return conductors or any extra earth conductors, always comprise both rails, with exception of stations where single rail track signalling circuits occurs.

On electrified lines AC track signalling circuits are used, either double rail or jointless. Most common are 95 and 105 Hz uncoded track signalling circuits.

ATC equipment type EBICAB 700 is used on most lines.

2.5.3 Sweden

In Sweden there are 9 543 km of electrified railway (2004). The railway network is meshed except for the northern part of Sweden. Most of the lines are single track lines except for lines close to Stockholm and the lines between the cities Stockholm, Gothenburg and Malmö.

The power supply system is of the type 15 kV, 16.7 Hz. The system is decentralized and synchronized with the 50 Hz national grid. The power is fed into the traction power supply system by converter stations, which convert the energy from 50 Hz, three-phase, to 16 2/3 Hz, single-phase. The converters are of both rotary and static (power electronic) type. The number of active converter units in each converter station is adapted to the load.

In order to reduce the number of converter stations, the contact overhead line system is also fed by a 132 kV system (a two-phase 2 x 66 kV system with directly earthed midpoint) with transformer substations. This system is used from the middle to the northern parts of Sweden. There is no power generation connected directly to the 132 kV system. The system is fed from transformers connected to the 15 kV 16,7 Hz busbars at the converter stations.

The two feeding systems for contact lines in Sweden are; BT-system (booster-transformer system) with one or two return conductors and AT-system (auto-transformer system). Sometimes also a strengthening wire (reinforcement wire, booster wire) occurs. This is more common in the northern part of Sweden, and this type of reinforcement wire is always used on AT-systems. Its objective is to lower the impedance. Sometimes an additional earth wire is used. This type of earth wire is planned to become standard on AT-system lines. A combined AT/BT-system is currently under investigation for introduction (a first small installation is made).

Most of the railway lines are fed from both ends (double sided feeding). Due to the high earth resistivity booster transformer systems with return conductors are mainly used, when not autotransformer systems are implemented, due to EMC requirements. This causes normally higher line impedance than in the central and south of Europe, where the return current can use the rails and earth all the way to the feeding point. The system is relatively weak with rather high voltage drops.

Only DC track signalling circuits exist on electrified lines in Sweden. At some non-electrified low traffic lines, radio block systems are used.

Only one of the rails, the S-rail, is used for the return path of the traction current. This is regardless of what type of feeding system that is being used (BT- or AT-system). The other rail is always isolated, I-rail, and is used for the DC track signalling circuits.

ATC equipment type EBICAB 700 is used on most lines.

2.6 Revision history

05-01-2007:

First version, based on the NIM NES-R10 report with the same title as this document, from 27.11.2006.

07-01-2009: Second version

3 SIGNALLING SYSTEMS AND TELECOMMUNICATION

3.1 References

3.1.1 Normative references

No.	b. Standard		Applicable to	
		Signalling	Power	
1.1	EN 50 110-1: Operation of electrical installations. CENELEC, European Standard.		Х	
1.2	EN 50 121: Railway applications – Electromagnetic compatibility (relevant parts in this context). Part 1: General Part 2: Emission of the whole system to the outside world Part 3-1: Rolling stock – Train and complete vehicle Part 3-2: Rolling stock – Apparatus Part 4: Emission and immunity of the signalling and telecommunication apparatus Part 5: Emission and immunity of fixed power supply installations and apparatus CENELEC, European Standard.	X	X	
1.3	EN 50 122-1 Railway applications- Fixed installations Part 1: Protective provisions relating to electrical safety and earthing. CENELEC, European Standard.		Х	
1.4	EN 50 128: Railway applications – Communications, signalling and processing systems – Sofware for control and protection systems. CENELEC, European Standard.	Х		
1.5	EN 50 153: Railway applications – Protective provisions relating to electrical harzards. CENELEC, European Standard.		Х	
1.6	EN 50 155: Railway applications Electronic equipment used on rolling stock. CENELEC, European Standard.	Х		
1.7	EN 50 163: Railway applications – Supply voltages of traction systems. CENELEC, European Standard.		Х	
1.8	EN 50 207: Railway applications – Electronic power converters for rolling stock. CENELEC, European Standard.		Х	
1.9	EN 50 215: Railway applications – Test of rolling stock after completion of construction and before entry into service. CENELEC, European Standard.	Х	Х	
1.10	EN 50 238: Railway applications – Compatibility between rolling stock and train detection systems. CENELEC, European Standard.	Х		
1.11	EN 50 388: Railway applications – Power supply and rolling stock – Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability. CENELEC, European Standard.		Х	

Page 18(42)

1.12	UIC 550, 550-1, 550-2, 550-3: Power supply installations for passenger stock.		Х
1.13	UIC 552: Electrical power supply for trains – Standard technical characteristics of the train line.		Х
1.14	UIC 554-1: Power supply to electrical equipment on stationary vehicles from local mains system or another source of energy at 220 V or 380 V, 50 Hz.	Х	
1.15	UIC 512: Conditions to be fulfilled in order to avoid difficulties in the operation of track circuits and treadles.	Х	
1.16	BVS 545.43501: Requirements on external antennas for railway vehicles (only published in Swedish: "Krav på yttre antenner för järnvägsfordon"). Banverket. Only normative for Sweden.	Х	
1.17	ITU-T Recommendation O.41: Psophometer for use on telephone-type circuits.	Х	

3.1.2 Other references

No.	o. Standard		ble to
		Signalling	Power
2.1	HS TSI: Directive 96/48/EC – Interoperability of the trans- European high speed rail system, 96/48 ST14EN03 ENE part 2, Draft from 22.06.2006.	Х	Х
2.2	Characteristics of infrastructure. Document JD 590. Jernbaneverket, 01.02.2005.	Х	Х
2.3	Electro-technical requirements on new electrical vehicles regarding compatibility with the power supply system and other electrical vehicles, BKE 00/14, rev. H. Banverket, July 2004.	Х	Х
2.4	Rotating converters BV/JBV: Description of simulation model. emkamatik document 06-0132, ver. 1. Stefan Menth, emkamatik, 18.9.2006.		Х
2.5	EN 61000-4-7, March 1993. Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 7: General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. IEC, CENELEC.		X

NOTE:

The limits and requirements in this chapter are under investigation and shall be treated accordingly. Please notice that operating experience indicates that lower limits may be required in some frequency ranges on certain line sections in Norway. These requirements are under consideration. Jernbaneverket may on some route sections permit slightly excessive interference currents for some frequencies. Based on documentation for the noise current spectrum of the vehicle, Jernbaneverket will decide whether or not it is compatible with the route sections in question.

3.2.1 S1: DC track circuits

3.2 Compatibility Requirements

3.2.1.1 Information

NORWAY:

DC track signalling circuits are used only at non-electrified railway stations, plus one single electrified railway station.

SWEDEN:

DC track circuits are the only train detection system in use on electrified lines in Sweden.

Only two credible mechanisms have been identified by which an electric vehicle is capable of generating excessive DC interference currents:

- 1. Transformer inrush. Low levels can be achieved by a proper design of the main transformer.
- 2. Ice on the overhead contact wire. It is recognised that it may not be feasible to design a rail vehicle in such a way that compliance can be guaranteed at all ice conditions.

A third cause can be faults in the vehicle.

3.2.1.2 Requirements

General requirements for the vehicle and the signalling equipment are in accordance with EN 50 121-3-1 and EN 50 121-4.

NORWAY:

No requirements.

SWEDEN:

Interference limits, normal operation.

The following interference limits apply, with the exception of the inrush current of the main transformer:

Frequency band	Bandwidth (low-pass)	RMS time	Limit value
0.0 - 2.0 Hz	-3.0 dB: 2.0 Hz	N/A	25.0 A

These limits are applicable for one vehicle, and for the maximum configuration of vehicles (i.e. multiple units) for which the approval must be valid.

Interference limits, transformer inrush.

The DC-component of the inrush current of the main transformer/s, must not exceed 45.0 A for more than 1.50 seconds, and also not exceed 25.0 A for more than 2.50 seconds. The DC-component is here defined as the mean value over one period of the fundamental, moving average calculation.

This is applicable for one vehicle, and for the maximum configuration of vehicles (i.e. multiple units) for which the approval must be valid. In a multiple formation, it is suggested that the cut-in of the main circuit breakers is staggered, e.g., with a 5 s delay between each cut-in event.

3.2.1.3 Verification

NORWAY:

N/A.

SWEDEN:

Normal operation test

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, at normal weather conditions (no frosty lines), and in accordance with the test specification section 3.3. The current transducer must handle the frequencies from DC and upwards.

The following signal processing of the recorded line current signal is suggested:

Signal processing	Limit value
(Downsampling to 1 kHz, followed by)	25.0 A
2.0 Hz 4 th order Butterworth low-pass filter,	
followed by an ideal rectifier to give the absolute	
value.	

Inrush current test

The tests shall be performed at a location where the short circuit current is greater than or equal to 20 kA, i.e. $Ik \ge 20$ kA on a single-track line. The train shall be placed beyond the first booster transformer, counting from a converter station, as described in section 3.3.4. (NOTE: this is <u>not</u> the same situation as for the AC inrush current tests, see chapter 4.4.4. The test specified here implies the test location to be at Ockelbo converter station with all converters in operation and all other converter stations connected to the 132 kV system. Other tests sites with scaling of the limit are under investigation.)

The following signal processing of the recorded line current signal is suggested:

Signal processing	Limit value
(Downsampling to 1 kHz, followed by)	
60 ms moving average, followed by an ideal rectifier	
to give the absolute value, followed by an	
assessment of the time duration for the level	
exceeding the following values:	
45.0 A:	1.50 s
25.0 A:	2.50 s

3.2.1.4 Documentation

NORWAY: N/A

SWEDEN:

Documentation shall be a conformity statement and documentation of performed tests.

3.2.2 S2: 95 Hz and 105 Hz track circuits (Norway only)

3.2.2.1 Information

Track circuits operating at 95 Hz and 105 Hz are the most commonly used in Norway. Impedance bonds for 95/105 Hz may be used to allow return current to pass by insulated joints used for separating track circuits.

3.2.2.2 Requirements

General requirements for the vehicle and the signalling equipment are in accordance with EN 50 121-3-1 and EN 50 121-4.

Interference limits.

The following interference limits apply:

Centre frequencies f _C	Bandwidth	Time limit	Limit value
95.0 Hz	- 3.0 dB: $f_{C} \pm 3.0 \text{ Hz}$	1.00 s	1.00 A
105.0 Hz			

The 1.00 A current limit may be exceeded for shorter time periods than 1.00 s. These limits are applicable for one vehicle, and for the maximum configuration of vehicles (i.e. multiple units) for which the approval must be valid.

Requirements for monitoring.

The vehicles must be equipped with interference monitoring systems for the 95 Hz and 105 Hz line current components. The monitoring system must automatically open the main circuit breaker within 2.0 s if the 2.00 A trip level is exceeded.

The suggested signal processing for the monitor is FFT with 1.00 Hz resolution (1.00 s window length). The trip level is 2.00 A RMS for any bin in the bands 92-98 Hz and 102-108 Hz.

3.2.2.3 Verification

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, in accordance with the test specification section 3.3. The following signal processing of the recorded data is suggested:

Centre frequencies f _C	Signal processing	Limit value
95 Hz and 105 Hz	(Downsampling to 1 kHz, followed by)	1.00 A
	$2 \cdot 3^{rd}$ order Butterworth band-pass filters with	
	-3.0 dB points at each f _C \pm 3.0 Hz, followed	
	by moving RMS, time window < 1.00 s	

3.2.2.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests.

3.2.3 S3: TI 21 track circuits (Norway only)

3.2.3.1 Information

TI 21 track circuits are used on some new lines in Norway, e.g., the Vestfold line.

TI 21 track circuits are designed with 8 channels A-H. The frequency of the carrier signal for the track circuit shifts between two values in each channel. The modulation rate of the frequency shift must lie within certain limits for a correct operation of the track circuit.

3.2.3.2 Requirements

General requirements for the vehicle and the signalling equipment are in accordance with EN 50 121-3-1 and EN 50 121-4.

The following interference limits apply:

Centre frequencies f _C	Bandwidth See note 1	Time limit	Limit value
Channel A: 1682 Hz and 1716 Hz	-3.0 dB: $f_C \pm 6.0$ Hz	1.50 s	TBD
Channel B: 2279 Hz and 2313 Hz	-20 dB: $f_{C} \pm 30 \text{ Hz}$		
Channel C: 1979 Hz and 2013 Hz			
Channel D: 2576 Hz and 2610 Hz			
Channel E: 1532 Hz and 1566 Hz			
Channel F: 2129 Hz and 2163 Hz			
Channel G: 1831 Hz and 1865 Hz			
Channel H: 2428 Hz and 2462 Hz			

Note 1: The bandwidth definitions are from the former British Rail Group Standard GS/ES 1914. This standard specifies a limit value of 100 mA, but this is probably not true for TI21s installed in a 16 2/3 Hz environment. The limit value is still under investigation.

The current limit may be exceeded for shorter time periods than 1.50 s. These limits are applicable for one vehicle, and for the maximum configuration of vehicles (i.e. multiple units) for which the approval must be valid.

3.2.3.3 Verification

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, in accordance with the test specification section 3.3.

Centre frequencies f _C	Signal processing	Limit value
1682 Hz and 1716 Hz 2279 Hz and 2313 Hz 1979 Hz and 2013 Hz 2576 Hz and 2610 Hz 1532 Hz and 1566 Hz 2129 Hz and 2163 Hz 1831 Hz and 1865 Hz 2428 Hz and 2462 Hz	Band pass filters with a rejection of ≤ 3.0 dB at ± 6.0 Hz from each f_C , and ≤ 20 dB at ± 30 Hz from each f_C , followed by moving RMS, time window < 1.50 s. See note 2.	TBD

The following signal processing of the recorded data is suggested:

Note 2: Much work has been spent in the UK in order to design digital filters with the best possible match to these limits, and many proposals exist. It is suggested that the design of filters is left to the applicants. It is likely however that the $-20 \, dB$ figure could actually be somewhat more - final value is under investigation. (TDB = To Be Determined).

3.2.3.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests.

3.2.4 S4: FTGS track circuits (Norway only)

3.2.4.1 Information

The jointless FTGS track circuits operate at 4 frequencies in the 4.5 to 6.5 kHz frequency band (FTGS46), and at 8 frequencies in the 9 to 17 kHz band (FTGS917). They are used on some newer lines in Norway, e.g., the Gardermoen line.

3.2.4.2 Requirements

General requirements for the vehicle and the signalling equipment are in accordance with EN 50 121-3-1 and EN 50 121-4.

The following interference limits apply:

Centre frequencies f _C	Bandwidth (see note 3)	Time limit	Limit value
4.75 kHz	-3.0 dB: $f_C \pm 200/2$ Hz	40 ms	1.00 A
5.25 kHz	-3.0 dB: $f_C \pm 206/2$ Hz		
5.75 kHz	-3.0 dB: $f_C \pm 214/2$ Hz		
6.25 kHz	-3.0 dB: $f_C \pm 220/2$ Hz		

FTGS46

Note 3: Attenuation at adjacent channels: max. 30 dB.

1100/17			
Centre frequencies f _C	Bandwidth (see note 4)	Time limit	Limit value
9.5 kHz	-3.0 dB: $f_C \pm 360/2$ Hz	40 ms	0.50 A
10.5 kHz	-3.0 dB: $f_C \pm 380/2$ Hz		
11.5 kHz	-3.0 dB: $f_C \pm 400/2$ Hz		
12.5 kHz	-3.0 dB: $f_C \pm 425/2$ Hz		
13.5 kHz	-3.0 dB: $f_C \pm 445/2$ Hz		
14.5 kHz	-3.0 dB: $f_C \pm 470/2$ Hz		
15.5 kHz	-3.0 dB: $f_C \pm 490/2$ Hz		
16.5 kHz	$-3.0 \text{ dB: } f_{\text{C}} \pm 510/2 \text{ Hz}$		

Note 4: Attenuation at adjacent channels: max. 30 dB.

The current limits may be exceeded for shorter time periods than 40 ms.

3.2.4.3 Verification

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, in accordance with the test specification section 3.3.

The following signal processing of the recorded data is suggested:

$\mathbf{\Gamma}^{\gamma}$	CCCAC	
ГІ	(1)40	

Centre frequencies f _C	Bandwidth bw	Signal processing	Limit value
4.75 kHz	200 Hz	$2 \cdot 2^{nd}$ order Butterworth band pass	1.00 A
5.25 kHz	206 Hz	filters, -3 dB at each $f_C \pm bw/2$ Hz,	
5.75 kHz	214 Hz	followed by moving RMS, time	
6.25 kHz	220 Hz	window $< 40 \text{ ms}$	

F	1	G	S	9	17	7	

Centre frequencies f _C	Bandwidth bw	Signal processing	Limit value
9.5 kHz	360 Hz	$2 \cdot 2^{nd}$ order Butterworth band pass	0.50 A
10.5 kHz	380 Hz	filters, -3 dB at each $f_C \pm bw/2$ Hz,	
11.5 kHz	400 Hz	followed by moving RMS, time	
12.5 kHz	425 Hz	window $< 40 \text{ ms}$	
13.5 kHz	445 Hz		
14.5 kHz	470 Hz		
15.5 kHz	490 Hz		
16.5 kHz	510 Hz		

3.2.4.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests.

3.2.5 S5: Telecommunication disturbances and psophometric currents

3.2.5.1 Information

Interference with digital systems such as PCM, ISDN, etc is not yet covered in this document. This is a field for which more work will be done. Information regarding GSM-R can be found in EIRENE standards from UIC.

The harmonics in the traction current of a railway system may induce noise in conventional analogue telecommunication system. The acceptable level of noise on conventional analogue telephone lines is specified by ITU-T. The limits in this document refer to the psophometric weighted traction current defined as:

$$I_{pe} = \frac{1}{P_{800}} \sqrt{\sum_{n=1}^{\infty} \left(h_f \times P_{fn} \times I_n \right)^n}$$

where $h_f = 1$, which is the equivalent psophometric current measured or calculated for interaction with a telephone line as a cable. P_{fn} is in accordance with ITU-T. For values of P_{fn} see Appendix 9.

3.2.5.2 Requirements

The psophometric weighted traction current must not exceed 1.50 A. The value refers to the 99%- percentile of the measured psophometric current, i.e., the level must be below 1.50 A for 99% of the operation time.

The requirement is applicable for one vehicle and for the maximum configuration of vehicles (i.e. multiple units) for which the approval must be valid.

In case of a fault on the vehicle, for instance when one or more of the traction modules or filters is/are disconnected and the increase of the psophometric current is less than 6.0 dB, the vehicle is allowed to be in working condition until it reaches a workshop, for up to 24 hours. For such a case the limit is doubled. If this demand can not be fulfilled, the vehicle shall be transported in a non-working condition.

3.2.5.3 Verification

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, in accordance with the test specification section 3.3.

For each LOOP operation cycle, the 99%-percentile of the psophometric current level shall be determined. See also EN 50 121-3-1, Annex A (informative). The tolerance of the

psophometric weight characteristics, as well as the dynamic characteristics, shall comply with ITU-T 0.41.

The following signal processing of the recorded data is suggested:

Signal processing	Limit value
IIR band-pass filter with a characteristic as defined in Appendix	1.50 A
9, followed by a moving RMS with a time window of 140 ms,	
followed by an analysis of the levels over time (e.g., by	
determining the percentage cumulative distribution), followed	
by an assessment of the 99%-percentile level.	

3.2.5.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests in a technical report. The report shall for each test lap state the 99%-percentile, and the summary shall state the variation of the 99%-percentiles (minimum, typical, and maximum values) for each operation mode (normal operation, and all relevant fault modes).

If the psophometric current varies significantly with speed (e.g., in the case of a rectifier vehicle), the report must additionally present a plot of the psophometric current versus speed.

3.2.6 S6: Broad-band interference (Norway only)

3.2.6.1 Information

Historically, the Norwegian State Railways applied broad-band interference limits rather than limits specifically at the signalling frequencies. Jernbaneverket has now initiated an investigation whether or not these broad-band limits are still technically justified; however, until this investigation is finalized, the limits remain valid.

3.2.6.2 Requirements

The following interference limits apply:

Frequency band	Time limit	Limit value
TBD – 7 kHz See note 5	1.00 s	1.00 A RMS
7 – 9 kHz		0.50 A RMS
> 9 kHz		0.33 A RMS

Note 5: The lower frequency limit is currently under investigation and is to be decided (=TBD).

The current limits may be exceeded for shorter time periods than 1.00 s.

3.2.6.3 Verification

Verification shall be done by test runs with measurement and data recording equipment being installed in the vehicle, in accordance with the test specification section 3.3.

The following signal processing of the recorded data is suggested:

Frequency band	Signal processing	Time limit	Limit value
TDB – 7 kHz See note 6	FFT with 8 1/3 Hz resolution	1.00 s	1.00 A RMS
7 – 9 kHz	(120 ms time window) followed		0.50 A RMS
> 9 kHz	by < 1.00 s moving RMS along the time axis of each FFT bin. The limit value applies per FFT bin.		0.33 A RMS

Note6: The lower frequency limit is currently under investigation and is to be decided (=TBD).

3.2.6.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests.

3.2.7 S7: Radiated interference

3.2.7.1 Information

Conformance with EN 50 121 is the basis for new constructions and upgrading of infrastructure systems.

3.2.7.2 Requirements

Requirements are in accordance with EN 50 121-2 and EN 50 121-3-1. Deviations, based on further evaluation, may be acceptable on a case-to-case basis.

3.2.7.3 Verification

Verification shall be performed by tests in accordance with EN 50 121-2 and EN 50 121-3-1.

3.2.7.4 Documentation

Documentation shall be a conformity statement and documentation of performed tests.

3.2.8 S8: Outside antennas on vehicles

3.2.8.1 Information

NORWAY AND SWEDEN:

Requirements in this document consider outside antennas for railway vehicles.

3.2.8.2 Requirements

NORWAY AND SWEDEN:

Antennas for railway vehicles shall satisfy the requirements on touch voltage in accordance with EN 50 122-1 *Railway applications- Fixed installations Part 1: Protective provisions relating to electrical safety and earthing*, and EN 50 155 *Railway applications Electronic equipment used on rolling stock.*

SWEDEN:

Antennas for railway vehicles shall satisfy the requirements in Banverket's document BVS 545.43501 *Krav på yttre antenner för järnvägsfordon*. (Requirements on external antennas for railway vehicles).

3.2.8.3 Verification

NORWAY: According to relevant standards, EN 50 122-1 and EN 50 155.

SWEDEN:

According to BVS 545.43501 *Requirements on external antennas for railway vehicles*. Clause 4.1-4.6. The tests should be performed as a factory type test.

3.2.8.4 Documentation

NORWAY AND SWEDEN: A conformity statement.

Page 30(42)

3.2.9 S9: Resistance between wheelsets

3.2.9.1 Information

N/A.

3.2.9.2 Requirements The resistance between wheels of a wheel set must be according to UIC512:1979 (< 0.1 Ω).

3.2.9.3 Verification According to UIC512:1979.

3.2.9.4 Documentation A conformity statement.

3.3 Validation and tests

3.3.1 Requirements prior to tests

NORWAY AND SWEDEN:

Before test runs and/or demonstrations are allowed on the railway lines in Norway or Sweden, certain documentation is required. In addition to the documentation mentioned later in this chapter, which refers to electrical requirements and how to perform tests, there are some other pre-requirements to be met. These pre-requirements and documentation concern topics like:

- train control (ATC)
- profile
- running dynamics
- axle loads
- current collector
- etc.

These pre-requirements are not covered in this document and it is the responsibility of the applicant for the acceptance to contact Jernbaneverket and/or Banverket to get the complete information regarding these requirements.

(Note: it is possible to test or demonstrate a vehicle without ATC by connecting the vehicle under test to an already accepted vehicle. Special provisions must however be made so that correct test conditions are met, i.e. the accepted extra vehicle must not influence the test results.)

NORWAY:

The requirements regarding other topics than electric compatibility captured in this document is to be clarified as a part of the overall compatibility process which is described in JD 590 chapter 1.

3.3.1.1 Interference currents

Documentation which contains estimations, calculations, or previous measurements of interference currents according to the requirements S1-S6 is required. If such documentation cannot be made available, a preliminary test must be performed on a closed track before any other tests are performed. See also the requirements in section 3.2.1 to 3.2.6.

3.3.1.2 Radiated EMI (S7, part of T6)

EMC test regarding radiated emission shall be performed by the manufacturer (or applicant) at the factory before any tests on railway lines in Norway or Sweden. See section 3.2.7.

3.3.1.3 Simulations of dynamic vehicle behaviour

Testing of new vehicles on the railway infrastructure is very costly and shall be kept to a minimum for the benefit of all involved parties in long term. In order to reduce the risk of a

failure of some tests as well as to document vehicle characteristics which can not be tested directly, simulations shall be performed by the vehicle manufacturer.

It is recommended that the simulation results are presented to and discussed with Jernbaneverket and/or Banverket prior to the first tests with the new vehicle.

This concerns low frequency power oscillations (see 4.3.8) and electrical resonance stability (see 4.3.9) and is based on EN 50388:2005, clause 10, steps 1 to 11 of the compatibility study.

3.3.1.4 Current or power control at low voltage

Documentation of current limitation as function of voltage is required.

3.3.1.5 Regenerative braking

Documentation of the voltage limitation functions when using regenerative brake is required.

3.3.1.6 Test plan

A test plan shall be presented to Jernbaneverket and/or Banverket before any measurements or tests are carried out. The test plan shall contain a description on how the tests are performed (i.e. what lines shall be used, closed track or mixed traffic and so on) and on the vehicle constellation (load, weight and so on). Furthermore, the test plan shall include a description of the instrumentation and measurement methods that will be used, and how the instrumentation is calibrated. This information shall also be included in the test reports.

3.3.2 Coordination with tests regarding compatibility with the power supply

The tests specified in the following sections can to a wide extent be coordinated with the tests regarding compatibility with the power supply.

Page 33(42)

BANVERKET

3.3.3 General test program

Table 2 below defines the test categories T1-T7, and outlines the minimum number of tests specifically addressing the requirements S1-S6.

Cat.	Condition	Scope and train operation
T1	Closed track, rotating converters	2 LOOP sequences in normal operation, and 1 LOOP sequence in each fault mode.
		(Plus additional tests for P-requirements; the data from these tests must be analyzed also for the S-requirements S1-S6).
T2	Closed track, static converters	2 LOOP sequences in normal operation, and 1 LOOP sequence in each fault mode, altogether in each end of the line (close to and far away from the substation. I.e., a total of 4 LOOP sequences in normal operation, and 2 LOOP sequence in each fault mode. (Plus additional tests for P-requirements; the data from these tests must be analyzed also for the S-requirements S1-S6).
T3	Mixed traffic	Mainly tests for P-requirements, but the data from these tests must be analyzed also for the S-requirements S1-S6
T4	Transformer inrush (peak AC)	N/A (P-requirement only)
T5	Transformer inrush (DC, S only)	Minimum 25 successful inrush events
T6	Other tests	According to EN 50 121-3
T7	Non-test approval	N/A

Table 2. General test requirements, S-requirements.

The tests of category T1 and T2 can be performed in either country. The tests T3 must be performed in the country/countries where the vehicle is going to operate. Test T5 must be performed in Sweden. Test T6 can be performed anywhere with 15 kV 16.7 Hz supply.

3.3.4 Test details

3.3.4.1 Test sites

The following test sites are suggested:

Cat.	Norway	Sweden
T1	Hønefoss-Nesbyen on the Bergen line.	Gemla-Lessebo, Alvesta-Kalmar line.
T2	Lillestrøm-Gardermoen, Gardermoen Airport line.	Eskilstuna-Nykvarn, Eskilstuna-Södertälje line.
T3	Oslo area.	Borlänge area (Borlänge-Krylbo, Borlänge- Ludvika).
T4	N/A (P-requirement only).	
T5	N/A	Ockelbo.
T6	Vehicle suppliers own test tracks.	
T7	N/A	

Table 3. Test sites, S-requirements.

3.3.4.2 Power supply configurations

CATEGORY T1: CLOSED TRACK, ROTATING CONVERTERS

The test line must be single-end supplied from one or two rotating converters in island operation. There must be no other trains activated or in operation on the test line. It is recommended that the test permissions allow for operation without ATC.

Figure 1. Supply conditions for T1 tests, S-requirements.

CATEGORY T2: CLOSED TRACK, STATIC CONVERTERS

The test line must be single-end supplied from one or two static converters. Since these converters are not designed for island operation, the remaining network must be connected in the supply end. There must be no other trains activated or in operation on the test line. It is recommended that the test permissions allow for operation without ATC.

Figure 2. Supply conditions for T2 tests, S-requirements.

CATEGORY T3: MIXED TRAFFIC

No specific requirements.

CATEGORY T5: TRANSFORMER INRUSH

Please refer to the detailed description of these tests in chapter 3.3.4.6 below.

3.3.4.3 Train configuration

All tests shall be performed with one vehicle alone and with all configurations of vehicles (i.e. multiple units) for which the approval must be valid. The tests must cover both normal fault-free operation, i.e., with all converters running and all filters etc. in normal mode, as well as all degraded operation modes, i.e., with one or more converter(s) and other subsystems cut-out.

3.3.4.4 Train load

Locomotives must be loaded by a reasonably heavy train ($\approx 1-2$ t per kN max. tractive effort, or $\approx 50-100$ t per MW max. power, whichever is the greater) during all tests T1 and T3. During tests T2, a somewhat lighter load may be used (some 25% of the values above).

3.3.4.5 Train operation - LOOP sequence

The train must be operated according to the "LOOP" speed profile shown in figure 3 below, during all tests specifically addressing the S-requirements.

All vehicles must perform tests up to their speed limit during test category T2. During the test categories T1 and T3, the maximum speed is typically given by the speed limit of the line (or, in the case of locomotives, by the load wagons), meaning that the LOOP sequence must be terminated at a lower speed.

Page 36(42)

Figure 3. LOOP operation sequence.

3.3.4.6 Transformer inrush (DC) test (T5, Sweden only)

NOTE: This is <u>not</u> the same test that is specified for AC inrush currents in section 4.4.

The train must be located just beyond the first booster transformer, seen from the converter station, as seen in figure 4 below.

The tests shall be performed with the maximum configuration of the vehicle (i.e. maximal number of units in multiple operation for which the approval must be valid). At least 25 trials of breaker closures shall be performed, preferably more. All trials must be within limits for acceptance.

The DC-component shall be calculated as the mean value over one period of the fundamental, moving average calculation. The transducer must handle the frequencies from DC and upwards. The whole course of the inrush current shall be recorded.

Figure 4. Train position at the inrush current test. For booster transformer data, please refer to Appendix 1, section A1.2.3, A1.2.4 and A1.5.6.

3.3.5 Measurement instrumentation and methods

3.3.5.1 Measurement instrumentation - requirements S1-S6

All measurements shall be performed with adequate voltage and current transducers (transformers and/or active transducers such as Rogowski coils and Hall transducers. Hall transducers are particularly required for DC measurements).

Sampling instruments as shown in figure 5 below are recommended. For measurements of high frequency phenomena, such as the Norwegian signalling circuit interference, a sampling frequency of approximately 50 kHz is recommended together with an anti-aliasing filter with a cut of frequency of approximately 20 kHz.

It is required that adequate anti-aliasing filters are used. The cut-off frequency of the anti-alias filter for the current measurement must be higher than the highest frequency of interest, i.e., higher than 17 kHz for Norway (FTGS track circuits) and higher than 6 kHz for Sweden (psophometric currents). The sampling frequency must be well above two times these values.

It is recommended that all raw data be streamed directly to a storage device (DAT recorder, hard-disk, or similar) for later post-processing and analysis, in addition to the on-line supervision. For the signal processing see chapter 3.3.5.2 below.

The figure below shows an example of the recommended principle of data recording and analysis, and how to install Hall transducers to measure the DC-current. It is recommended that the speed signal be taken from the vehicle control rather than via GPS, since the test lines comprise numerous tunnels without GPS coverage.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02

Page 38(42)

Figure 5. Transducer position and recommended measuring equipment.

The tolerance of the overall signal chain including transducers, signal conditioners, A/D converters, and data analysis, must be determined before the tests. A measurement error of less than \pm 1% at the fundamental, and less than \pm 5% of any of the stated interference requirements, is expected.

The principles of the data analysis, as well as the tolerances, must be described and presented before the tests, as a part of the test plan for the accepting authority.

3.3.5.2 Data analysis - requirements S1-S6

The recorded data must be processed and analysed in accordance with the interference requirements S1-S6. The result plots from the analysis (one or more plots per individual LOOP, ABAB, or ARO sequence) must present the following quantities, all versus time:

- RMS line current
- RMS line voltage
- Train speed
- DC current (Sweden only)
- 95 Hz and 105 Hz RMS current (Norway only)
- RMS currents in each of the 16 TI 21 channels (Norway only)

- RMS current in each of the 4 FTGS46 channels, and each of the 8 FTGS 917 . channels (Norway only)
- RMS current in the broad-band interference channels. The lower channel should be • split in three bands, such that the levels in the following frequency bands are presented separately: 33 Hz - 150 Hz > 150 Hz - 300 Hz > 300 Hz - 7 kHz. > 7 kHz - 9 kHz, > 9 kHz (Norway only)

In addition, the following information must be given in each plot:

- Test date
- Line section
- Test ID (reference to the test log)
- Status of the vehicle (number of converters in operation, software revision etc.) .
- Distance covered during the test sequence •
- 99%-percentile of the psophometric current .

If the psophometric current varies significantly with speed (e.g., in the case of a rectifier vehicle), the test report must additionally present a plot of the psophometric current versus speed.

Figure 6 below shows the suggested analysis method, based on a sampling frequency of the raw data of 50 kHz.

For FFT analysis, Hanning windows are recommended.

It is suggested that the psophometric currents are determined by means of a digital IIR filter with a characteristic equal to that specified by Appendix 9. It must be documented that the gain of the filter complies with the tolerance specified in ITU-T O.41 throughout the frequency band 50 Hz – 6 kHz. The recommended RMS integration time is 140 ms.

If FFT methods are used, the psophometric weighting function according to ITU-T (see Appendix 9) shall be applied on the FFT bins according to the formula in section 3.2.5. For FFT bins between the frequencies for which the weighting factors are specified, linearly interpolated values shall be used. The recommended FFT window length is 120 ms. At least 50% overlapping is required. The applicant shall describe how he deals with spectral leakage and frequency variations.

Other types of measurement and evaluation methods, than the recommendations above, can be discussed, but the applicant must then show how these measurements will be carried out and what accuracy will be achieved.

Jernbaneverket

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document $\mathrm{TS02}$

Page 40(42)

Figure 6. Suggested post-processing of the recorded data.

3.3.5.3 Data analysis – S1-requirement (transformer inrush)

The current and voltage waveforms, as well as the 60 ms moving average value of the current, around each inrush event must be plotted, and the time for the 60 ms moving average value of the current exceeding plus or minus 25.0 A must be noted. Each plot must have information about the test date, the exact location of the test, and the data recording ID(s).

3.3.5.4 Measurements and analysis - S7-reqiurement

Measurements procedures and instrumentation are in accordance with EN 50 121, part 2 and 3-1.

3.4 Documentation

3.4.1 General

All documentation shall be in English. The documentation shall contain:

- Technical functional descriptions, when required
- Measuring equipment
- Accuracy
- Calibration
- Test set up (trains other locos and so on)
- Software version on vehicle
- Time and date for the tests
- Track/line sections and distance from start of line for the presented registrations
- Information about number of repetitions and approximate location for the various tests. Based on this, the applicant must evaluate whether the results can be considered as typical and representative for the later use of the rolling stock, or if special conditions not included in the tests may potentially lead to future problems.
- Discussion of the results and evaluation and a conclusion whether each requirement is fulfilled or not, i.e. a confirmative statement for each requirement.
- A summary report (or a summary as a part of the whole report) where the test results are summarized with remarks and observations, especially incompatibilities and exceedances of limits.

Furthermore, a general technical description containing a principle block diagram of the traction circuits of the vehicle is required.

4 POWER SUPPLY

(Applies to "Energy" only. Please see JD590 chapter 4).

JD 590, chapter 5, appendix 5a, rev. 0, 01.01.10

	TECHNICAL SPECIFICATION	TS 02 APPENDICES
POWER CO-	FROM THE NES	PAGES: A41
OPERATION	GROUP	DATE: 01.07.2009

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles

APPENDICES

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES

Page A2 of A41

TABLE OF CONTENTS

A1	APPI	ENDIX 1: INFRASTRUCTURE DATA AND RELATED INFORMATION	4
A1.	.1 M/	AIN DATA	
A1.	.2 Po	WER GENERATION	
1	A1.2.1	Connection to public utility	
1	A1.2.2	Power stations	6
1	A1.2.3	Rotary frequency converters	6
1	A1.2.4	Static frequency converters	7
A1.	.3 Po	WER DISTRIBUTION	9
1	A1.3.1	General data	9
1	A1.3.2	Transformer stations	
1	A1.3.3	Transmission lines	
1	A1.3.4	Cables	
A1.	.4 Su	BSTATIONS	
1	A1.4.1	General data	
1	A1.4.2	Autotransformers	
1	A1.4.3	Passive filters and compensators	
1	A1.4.4	Controlled filters, compensators and balancers	
1	A1.4.5	Auxiliaries	
1	A1.4.6	Other equipment	
A1.	.5 RA	ILWAY LINES	
1	A1.5.1	Longitudinal characteristics	
1	A1.5.2	Cross connections on double-track lines	
1	A1.5.3	Cross sections of lines	
1	A1.5.4	Cable sections	
1	A1.5.5	Return current arrangement	
1	A1.5.6	Booster transformers	
1	A1.5.7	Neutral sections/Phase gaps	
1	A1.5.8	Interaction AC/DC railways	
1	A1.5.9	Numerical values BT system	
1	A1.5.10	Numerical values AT system	
A1.	.6 Sic	GNALLING EQUIPMENT	
1	A1.6.1	Track circuits	
1	A1.6.2	Axle counters	
1	A1.6.3	Automatic train protection (ATP) and automatic train control (ATC)	
1	A1.6.4	Interference monitors	
1	A1.6.5	Interference limits	
1	A1.6.6	Data transmission and remote control systems	
A1.	.7 Op	ERATIONAL CONDITIONS	
1	A1.7.1	Line frequency	
1	A1.7.2	Line voltage RMS value	
1	A1.7.3	Line voltage spectrum	
1	A1.7.4	Regenerative brake	
1	A1.7.5	Power factor	
1	A1.7.6	Earthing	
1	A1.7.7	Traffic information/characterisation	
1	A1.7.8	Network operation	
1	A1.7.9	Infrastructure classes	
A1.	.8 Ex	ISTING ELECTRICAL VEHICLES	
1	A1.8.1	Electrical locomotives in Norway and Sweden	
1	A1.8.2	Electrical multiple units in Norway and Sweden	
A2	APPI	ENDIX 2: NETWORK MAP NORWAY	
A3	APPI	ENDIX 3: NETWORK MAP SWEDEN	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A3 of A41

A /	1 I.o.	U EDEOLENICU DONIED OCCULI ATIONIC	
A4.	1 LOV	Packaround	FEIL: BOKMERKE ER IKKE DEFINERT
1	(4.1.1)	Dafinition of a simulation model	
1	14.1.2	Definition of a simulation model Stability study	
۲ ۸ ۸	14.1.3 7 Ett	SIADILLY SIAAY	
A4.		Rackaround	Feil! Bokmarka ar ikka dafinart
1	14.2.1	Definition of a simulation model	
1	4.2.2	Stability study	
A5	APPE	NDIX 5: DYNAMIC BEHAVIOUR OF ROTARY CON	VERTERS 33
A5.	1 SUN	/MARY	Feil! Bokmerke er ikke definert
A5.	2 EX/	AMPLES OF CONVERTER UNIT RESPONSE TO CHANGES IN LOA	DFEIL! BOKMERKE ER IKKE
DEF	INERT.		
1	5.2.1	Introduction	Feil! Bokmerke er ikke definert.
I	15.2.2	Definitions	Feil! Bokmerke er ikke definert.
1	15.2.3	Frequency response	Feil! Bokmerke er ikke definert.
1	5.2.4	Active power step response	Feil! Bokmerke er ikke definert.
1	5.2.5	Active power ramp response	Feil! Bokmerke er ikke definert.
1	5.2.6	Repetitive changes in active power	Feil! Bokmerke er ikke definert.
1	5.2.7	Reactive power step response	Feil! Bokmerke er ikke definert.
A5.	3 Vo	LTAGE PHASE ANGLE VARIATION WITH LOAD 1	Feil! Bokmerke er ikke definert
A5.	4 TIM	ie domain ModelI	Feil! Bokmerke er ikke definert
I	5.4.1	Physical background	Feil! Bokmerke er ikke definert.
I	5.4.2	Model structure	Feil! Bokmerke er ikke definert.
I	5.4.3	Model parameters	Feil! Bokmerke er ikke definert.
I	5.4.4	Line parameters	Feil! Bokmerke er ikke definert.
I	5.4.5	Simulations with vehicles	Feil! Bokmerke er ikke definert.
I	5.4.6	Simulation of several vehicles	Feil! Bokmerke er ikke definert.
I	5.4.7	Validation examples	Feil! Bokmerke er ikke definert.
I	5.4.8	Application of the model	Feil! Bokmerke er ikke definert.
A5.	5 PHA	ASOR DOMAIN MODEL	Feil! Bokmerke er ikke definert
A6	APPE SWEI	NDIX 6: TYPICAL CROSS SECTION OF A BOOSTE DEN	R TRANSFORMER LINE IN
A7	APPE	NDIX 7: CROSS SECTION OF EXISTING AT-SYSTE	CM LINES IN SWEDEN
	ADDE	NDIV 9. ODOCC SECTION OF NEW CTANDADD FO	DAT EVETENE I INEC IN
Аð	APPE SWEI	NDIA 0; UKUSS SEUTIUN UF NEW STANDARD FU.)EN	K A 1 - 5 1 5 1 EIVI5 LINES IN 30
		、 ,	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A4 of A41

A1 APPENDIX 1: INFRASTRUCTURE DATA AND RELATED INFORMATION

This appendix contains more detailed infrastructure data for Norway and Sweden based on requests from the ESC Infobank. The appendices also include a list of existing vehicles.

The data and values shall be regarded as information which can be changed without notice, hence the values shall not be considered as exact stipulated data. More specific information can be given by the authority in each country respectively.

Another source for information about the infrastructure and traffic may be the Network Statements.

Data	Norway	Sweden
Owner	Norwegian National Rail	Swedish National Rail
	Administration	Administration
Power supply system	15 kV, 16 2/3 Hz	15 kV, 16 2/3 Hz
Length of railway network	4000 km, of which 220 km	9882 km, of which 1734 km
	double track	are double track or more
		(11 697 km track length)
Length of electrified railway	2500 km, of which 220 km	7638 km, of which 1734 km
network	double track	are double track or more
		(9543 km track length)
Мар	See appendix 2	See appendix 3
Modifications planned in	Rebuilding of weak main	New single track lines on
future	lines and construction of	the east coast in the north of
	some new lines (double	Sweden (Botniabanan and
	track) that will increase	Haparandabanan)
	capacity and cut travel time	New city lines double track
	between existing railway	in Stockholm and Malmö
	destinations around Oslo	Strengthening of some weak
		lines. Further away: High
		speed lines Stockholm-
		Mjölby and Gothenburg-
		Norway. Upgraded lines
		Stockholm-Sundsvall,
		Stockholm- Gothenburg,
		Stockholm-Malmö,
		Gothenburg-Malmö.
Other	The traction power supply is	-
	generally weak.	

A1.1 Main data

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A5 of A41

A1.2 Power generation

Data	Norway	Sweden
Direct supply from public network	No	No
Supply from public utility	Yes	Yes
via rotary frequency		
converters		~~
Supply from public utility	Yes	Yes
via static frequency		
converters		N
Railway owned power	Yes, but one hydro power	NO
stations / generators	station owned by other	
	company (Statkraft SF)	
Supply network structure	Decentralized, but a small	Decentralized, including a
	centralized 55 kV network	132 kV-reeding system
	exists in the region south	which connects 8 converter
Frequency and phase	Synchronous to public	Synchronous to public
stiffness	utility.	utility.
	See section 6.1.2 in the	See section 6.1.2 in the
	report.	report.
	Transient deviation in	Transiant deviation in
	fraguency may occur due to	fraguency may occur due to
	shanging load	abanging load
	Dhase	Dhase
	For both rotary and static	For both rotary and static
	converters phase angle	converters phase angle
	depends on load demand	depends on load demand
	For a load at $cos(\omega) = 1.0$	For a load at $cos(\omega) = 1.0$
	the phase normally lags 36°	the phase normally lags 36°
	at converters at rated load	at converters at rated load
	at controllo at fatta foud.	at controllo at fatea foud.

A1.2.1 Connection to	public utility
----------------------	----------------

Data	Norway	Sweden
Voltage level at connection	min: 11 kV	min: 70 kV
point (PCC= point of	typ: 66 kV	typ: 130 kV
common coupling)	max: 130 kV	max: 220 kV
Short circuit power at	min: 70 MVA	min: 594 MVA
connection point (PCC=	typ: 250 MVA	typ: 2-3000 MVA
point of common coupling)	max: 2500 MVA	max: 9260 MVA
Short circuit power at	Not calculated	Without any contribution
substation input		from rotary converters:
		min: 45 MVA

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A6 of A41

		typ: 150-200 MVA max: 480 MVA
Modifications planned in future	No information available.	Increased feeding capacity when new converters are commissioned.

A1.2.2Power stations

Data	Norway	Sweden
Number of power stations	1	None
Number of generators per	min: 2	N.A.
station	typ: 2	(= not applicable)
	max: 2	
Rate generator power	min: 600 kW	N.A.
	typ: 600 kW	
	max: 600 kW	
Typical short circuit	Unknown	N.A.
impedance of generator [%]		
Typical short circuit	3.09+j0.978	N.A.
impedance of transformator		
[%]		
Modifications planned in	Increasing generator	N.A.
future	capacity to 2500 kW	

A1.2.3Rotary frequency converters

Data	Norway	Sweden
Converter name	ASEA Q24, Q38, Q48 and	ASEA Q24/Q25
	NEBB 7 MVA and 10 MVA	ASEA Q38/Q39
		ASEA Q48/Q49
Number of converter stations	29	25 and 3 which have both
		rotary and static converters
Number of converters units	min: 1	min: 2
per station	typ: 2	typ: 3
	max: 3	max: 5
Type of converter	Synchronous to synchronous	Synchronous to synchronous
Type of excitation and	Electro-mechanical	Electro-mechanical
control		
Damping	Damping windings in	Damping windings in
	generator-machine, none in	generator-machine, none in
	motor-machine	motor-machine
Railway side connected to	Contact line for all, but also	Contact line
	to 55 kV distribution	
	network in two stations	
Regeneration capability	Yes	Yes

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A7 of A41

		· · · · · · · · · · · · · · · · · · ·
Rated converter power per	min (Q24): 2.4	min (Q24): 2.4
unit [MVA]	typ (Q38): 4	typ (Q38): 4
	max (Q48): 10	max (Q48): 10
Continuous power per unit	min (Q24): 3.1	min (Q24): 3.1
(respectively) [MVA]	typ (Q38): 5.8	typ (Q38): 5.8
	max (Q48): 10	max (Q48): 10
Typical short circuit	min (Q48): j7.0	min (Q48): j7.0
impedance of generator+	typ (Q38): j14.35	typ (Q38): j14.35
Transformer [Ohm]	max (Q24): j33.1	max (Q24): j33.1
Voltage regulation	Stiff or slightly declining	Stiff or slightly declining
	with increasing reactive	with increasing reactive
	power demand.	power demand.
Capacity	The number of active units	The number of active units
	in each station is adapted to	in each station is depending
	hourly variation in power	on the actual load and
	demand	adaptive load statistics.
Overloading capacity	Up to +40 % of continuous	Up to +40 % of continuous
	power for 6 minutes and	power for 6 minutes and
	+100 % of rated power for 2	+100 % of rated power for 2
	seconds	seconds
If overloaded	Converter is instantaneously	Converter is instantaneously
	disconnected	disconnected
Modifications planned in	Static and brushless	Brushless exciters may be
future	excitation may be	introduced in the future.
	implemented. Maybe	
	increasing the number of	
	converters in each station.	

A1.2.4 Static frequency converters

Data	Norway	Sweden
Converter name	ABB PWM converter	ASEA Cyclo-converter:
	ABB/Adtranz PWM	YOQC
	converter: MegaMacs	ASEA/ABB PWM-
	Siemens	converter: TGTO
		ABB/ADtranz PWM-
		converter: MegaMacs
		ALSTOM PWM-converter
Number of converter stations	6	18
Number of converters units	min: 2	min: 2
per station	typ: 2	typ: 3
	max: 3	max: 4
		6 in future
Type of converter	PWM converter: Line	15 cyclo converters and 37
	voltage converter (rectifier)	PWM conveters
	and pulse width modulated	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A8 of A41

	inverter connected together with DC-link	
Filters on railway side	Yes, broad band and psofometric filter	Normal filter configuration for cylco converters and MEGAMACS is a wideband filter. Normal filter configuration for other PWM converters is 6 th and 8 th and wideband
Other filters	DC-link: 2 nd , 4 th , 6 th and 8 th /9 th . Utility grid: Yes	DC-link: 2 nd , 4 th , 6 th and 8 th and wideband in MEGAMACS converters Utility grid: Yes
Regeneration capability	Only one station, in others the phase angle is shifted to push regenerated energy forward to other trains or stations. Some stations have a resistor for taking care of short term feedback power.	All cyclo converters can regenerate to the 50 Hz-grid. 2 converter stations with PWM-converters can regenerate to the 50 Hz grid. (Alingsås and Järna). All other PWM converters have resistors to take care of short term feedback power.
Rated converter power per unit [MVA]	min: 6 typ:	min: 6 typ: 15
Typical short circuit impedance of output transformer [%]	0.013+j0.0677 pu	$\begin{array}{c} \text{max.} & 13 \\ \hline 0.83 + j 13.0 \text{ but can vary a} \\ \text{lot:} \\ \hline 0.83\% > \text{ur} > 1.49\% \\ \hline 7.94\% > \text{ur} > 13.0\% \end{array}$
Voltage regulation	Stiff or slightly declining with increasing reactive power demand. Static converters imitate the dynamical response of a rotary converter (ASEA Q48) due to software parameterisation. The 1~ phase voltage angle depends therefore of the 3~ phase angle.	Stiff or slightly declining with increasing reactive power demand. Static converters imitate the dynamical response of a rotary converter (ASEA Q48) due to software parameterisation. The 1~ phase voltage angle depends therefore of the 3~ phase angle.
Frequency regulation	Synchronization with the 50 Hz grid is kept by means for phase-locked loops	Synchronization with the 50 Hz grid is kept by means for phase-locked loops
Capacity	The number of active units in each station are automatically adapted to	The number of active units in each station is depending on the actual load and

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A9 of A41

	variation in power demand	adaptive load statistics.
Overloading capacity	No short time exceeding of	Normally no overload
	rated power	capacity but MEGAMACS
	-	have a short time capacity of
		17 MVA
If overloaded	If current limit is reached,	If current limit is reached,
	voltage will be reduced. The	voltage will be reduced. The
	voltage will then not be sine	voltage will then not be sine
	adapted.	adapted.
Extensions planned in future		7 new static converters are
		under commissioning,
		in operation 2007-2008

A1.3 Power distribution

A1.3.1 General data

Data	Norway	Sweden
Railway owned power	Yes at 16.7 Hz, in one	Yes at 16.7 Hz
distribution network exists	limited area	
Nominal voltage [kV]	55 (2 x 27.5 kV)	132 kV (2x66 kV)
Number of phases	2	2
Purpose	Connecting one hydro	To reduce number of
	power station, 2 rotary	converter stations and have
	converters and 3 substations	a more even usage of the
		remaining converter stations
Network length [km]	Approx. 157	1925
Total cable length	No information available.	Cables north of Uppsala of
		length 6 km and south of
		Uppsala 3 km. (these are the
		longest existing cable
		sections)
Lowest network resonance	No information available.	Normally 100 -130 Hz.
frequency [Hz]		Resonance frequencies
		lower resonance frequencies
		can occur (combinations of
		lines and connected installed
		power).
Modifications planned in	No significant modifications	No significant modifications
future		planned

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A10 of A41

A1.3.2Transformer stations

Data	Norway	Sweden
Number of transformer	3 plain transformers, 2	31 plain transformers
stations	located together with	substations,
	converter stations	8 transformer substations
		located together with
		converter stations
Nominal power rating	min: 2x2.5	All plan transformer
[MVA]	typ:	substations have one 16
	max: 1x8	MVA transformer Most
		transformer substations at
		converter stations have two
		25 MVA transformers but
		normally only one
		operating.
Short circuit impedance [%]	min:	min:
	typ: 6.3-6.5	typ: 5
	max:	max:
Efficiency in nominal point	typ: 98-99	> 99 at $\cos(\phi) = 1.0$
[%]		
Voltage regulation	Typically none, but one	Only tap changers, no on
	station has automatic tap	load tap changers.
	changer	
Modifications planned in	None	No
future		

A1.3.3Transmission lines

Data	Norway	Sweden
Typical transversal section	55 kV (2x27.5 kV) normally	132 kV lines (2x66 kV) are
(cross section)	made up with concrete poles	normally built with wooden
	and with the phase height of	poles with a phase height of
	9.2 m and phase spacing of	10.8 m (sags included) and a
	3.5 m.	phase spacing of 4m.
		Earthed top wires only close
		to substations and on some
		lines where old 3-pase 220
		kV lines have been reused.
Conductor material(s)	Cu and FeAl	DOVE: 329 mm ² FeAl
Conductor cross section (s)	4x35, 4x50, 2x50 and 2x70	See above.
[mm2]		
Specific impedance	0.34+j0.24 or 0.73+j0.28	Positive sequence:
[Ohm/km]		0.1025+j0.126 Ω/km
		Zero sequence:
		0.1349+j0.456 Ω/km

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A11 of A41

		Pos.seq. capacitance: 9.5862 nF/km
		C 4444 a E /large
		0.4444 IIF/KIII
Modifications planned in	No significant modifications	No significant modifications
future		planned.

A1.3.4Cables

Data	Norway	Sweden
Specific impedance	0.1+j0.03 or 0.12+j0.28	Per phase:
[Ohm/km]		0.1009 + j 0.026
Specific capacitance [nF/km]	Per phase:	Per phase:
	0.16 μF/km	0.16 μF/km
Modifications planned in	No significant modifications	None known.
future		

A1.4 Substations

A1.4.1 General data

Data	Norway	Sweden
Мар	Se appendix 2	Se appendix 3
Number of substations	38	See section A1.2.4 and
		A1.3.2.
Type of substations	Transformers only: 3	See references above
	Converters feeding contact	
	line: 35	
	Hydro power station: 1	
Nominal power rating of	min: 2x0.625	See references above
complete substation [MVA]	typ: 2x5.8	
	max: 3x15	
Feeding of railway lines	Single side	Single and double sided
	Double side	feeding.
	Multiple side (2 T-	
	connections)	
Distance between substations	min: 12	See section A1.5.1.
[km]	typ: 80	
	max: 92	
Distance of single fed line	min:	See section A1.5.1.
[km]	typ:	
	max: 63	
Normal operation of network	Interconnected	Interconnected
Separation of feeding areas	Seldom sectioned, but	Normally no separation of
(neutral sections)	depending on operation of	feeding areas.
	utility grid	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A12 of A41

Voltage at railway side	Controlled during operation	16.5 kV controlled during
		operation, stiff or slightly
		declining, proportional to
		the inductive load (slightly
		increasing at capacitive load
Modifications planned in	No information available.	More stations will have
future		slightly declining voltage,
		proportional to the inductive
		load (slightly increasing at
		capacitive load

A1.4.2Autotransformers

Data	Norway	Sweden
Autotransformers exist	No, but planned in future	Yes, but only on single track
	_	lines
Voltages [kV]	2x15	2x15
Transformer rating [MVA]	min:	5
	typ: 5	Normally two AT's in
	max: 2x5	parallel are used as feeding
		transformer feeding an AT-
		line.
Short circuit impedance [%]	min:	uk = 0,4 %, 57.53° (or
	typ: 0.4	0.184+j0.117 Ω)
	max:	
Distance between trafos [km]	min: 8	min: 8
	typ: 10	typ: 10
	max: 12	max: 12
Present on fed lines	both single and double	both single and double
	side	
Connection of AT to lines	Negative feeder (-15 kV),	Normal connection, i.e.
	rail (0 kV) and positive	negative feeder (-15 kV),
	feeder (+15 kV). Positive	rail (0 kV) and contact line
	feeder interconnected to	as positive feeder (+15 kV).
	contact line (sectioned)	
	typical each 5 km.	
Combination with other	Not planned	At some lines with booster
systems		transformers, i.e. some lines
		may in the future be
		converted into ATBT-
		system.
Modifications planned in	Planned to be used for	More AT-system lines are
future	today's weak lines	planned. A I-system may
		occur on double track lines
		in the future.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A13 of A41

A1.4.3 Passive filters and compensators

Data	Norway	Sweden
Passive filters exist	Yes	No, only at converter
		stations with static
		converters, see A1.2.4
Type of filter	Series capacitor and shunt	N.A.
	capacitor	
Schematics etc.	No information available.	N.A.
Resonance frequencies	Series: No significant	N.A.
	effects on resonance	
	frequencies.	
	Shunt: No information	
	available.	
Where in service	Series capacitor between	N.A.
	converter stations on weak	
	lines, shunt capacitor in	
	heavy load area (Oslo S)	
Purpose	Series capacitor for voltage	N.A.
	increase and shunt capacitor	
	for reactive power feeding	
Rating	Series cap -j7.35 [Ohm]	N.A.
	Shunt cap 4 [MVAr]	
Modifications planned in	Series capacitors will	More filters built when new
future	probably be removed when	converters are built
	line is reinforced/rebuilt	
	with AT-system	

A1.4.4Controlled filters, compensators and balancers

Data	Norway	Sweden
Controlled filters/ comp.	No	No
exist		
Type of installation	N.A.	N.A.
Schematics	N.A.	N.A.
Where in service	N.A.	N.A.
Purpose	N.A.	N.A.
Modifications planned in	N.A.	N.A.
future		

A1.4.5Auxiliaries

Data	Norway	Sweden
Substation and station supply	Yes	Yes
Switch heating	Yes	Yes
Train heating	Yes	Yes

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A14 of A41

Any other equipment	No	See section 6.9.4 in the
		report.
Modifications planned in	No information available.	None
future		

A1.4.6Other equipment

Data	Norway	Sweden
Other equipment exist	No	No
Description	N.A.	N.A.
Modifications planned in	No information available.	None
future		

A1.5 Railway lines

A1.5.1 Longitudinal characteristics

Data	Norway	Sweden
Мар	See appendix 2	See appendix 3
Max length between feeding points [km]	92	156 (one weak line), normally 60-120 km but shorter in areas with heavy traffic, the longer distance reflects that 132 kV lines are present
Max length between feeding points and open line end [km]	63	63
Modifications planned in future	Introducing AT-systems, the max length between feeding points probably will be increased to 120 km	No specific modifications planned.

A1.5.2Cross connections on double-track lines

Data	Norway	Sweden
Cross connection is done	Never in normal operation	Exists on some lines
	but one shorter line where	(Tranås-Malmö) as normal
	the two tracks are operated n	operation. On other lines
	parallel (connected in the	only during fault conditions
	ends)	or maintenance.
Cross-connections (if	Switchable, but just in use in	Switchable.
existing) are	fault situations	
Distance between	min:	Normally 7-10 km.
connections (if existing)	typ: very variable	
	max:	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A15 of A41

Modifications planned in	No information available.	More lines using cross
future		connections are under
		investigations

A1.5.3Cross sections of lines

Data	Norway	Sweden
Number of tracks on open	Mostly single track, but	Normally single track but
line (i.e. outside	double and multiple track	double track between the
stations/yards)	exist	cities Stockholm,
		Gothenburg and Malmö and
		north and west of Stockhom,
		see Appendix 3, Network
		map of Sweden. In the
		Stockholm area 4 track lines
		exists.
Earth wire	On some lines, both	Exits on some lines.
	sectioned and	
	interconnected exist	
Feeder (electrically parallel	Normally not, but exist on	Only on a few lines.
to contact line)	some lines	
Feeder (connection in switch	On some lines	Only at a few locations, e.g.
posts only)		in the Stockholm area.
Return conductor	On some lines, normally	Yes, normally two 212 mm^2
	two 240 mm ² Al	Al
Auto-/booster wires	No information available.	BT-systems: Booster wire is
		normally $(212 \text{ mm}^2 \text{ Al})$ used
		in the north of Sweden and
		some lines in the south, see
		Appendix 3, Network map
		of Sweden.
		AT-systems: Booster wire is
		normally used.
Public utility (no direct	Not at all	None
connection to railway		
system)		
Auxiliary supply (no direct	Not at all	Auxiliary power of 3-phase
to railway system)		22 kV or 11 kV (also 2-
		phase exists) are normally
		placed on top of the contact
		line poles. This auxiliary
		power is normally fed from
		converter stations. Loads
		along the lines can also be
		ted from the public network.
		Transformers at loads along

 $\label{eq:construction} Requirements \mbox{ on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure} and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A16 of A41 \\ \mbox{Page A16 of A41} \\ \mb$

		the line. The voltage is very
		weak
Open communication lines	On some lines	On most of the lines, placed
		in the embankment.
Typical cross section(s)	No information available.	See appendix 6 for a typical
layout(s)		BT-line and appendix 7 and
		8 for AT-lines.
Any other important info	Isolation standard	Isolation standard
	(target/planing level) for the	(target/planning level) for
	contact overhead line	the contact overhead line
	system is 170/70 kV.	system is 170/70 kV. There
		exists lines with isolation
		levels between 150/55 kV
		and 225/75 kV.
Modifications planned in	No information available.	Earth wire are planned to be
future		standard on all future AT-
		lines, probably also on BT-
		lines. Exits already on some
		lines.

A1.5.4Cable sections

Data	Norway	Sweden
Length of cable connection	typ: 0.1	0.1 - 4 km, typical value
substation to contact line	max: 5	300 m.
[km]		
Length of feeder cable	typ:	Exist only in the Stockholm
parallel to railway line (e.g.	max: short	area (4 cable feedings).
tunnels, urban areas) [km]		Typical length : 13 km.
Specific impedance	min: 0.10+j0.03	For cables in the Stockholm
[Ohm/km]	typ: 0.12+j0.06	area:
	max:	0.12 + j 0.054 and
		0.15 + j 0.036
Specific capacitance [µF/km]	min:	For cables in the Stockholm
	typ: 0.26	area:
	max:	0.16 and 0.26 µF/km.
Modifications planned in	Introducing AT-system may	Under investigation
future	cables for negative and	(Citybanan in Stockholm).
	positive feeder in tunnels	
	may be necessary	

A1.5.5Return current arrangement

Data	Norway	Sweden
Rail types	S49: 2700 km	Normally UIC 50 and UIC
	S54: 750 km	60 or corresponding.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A17 of A41

	UIC60: ca. 200 km	
Rail info	Normally welded, isolated gaps/joints exists	One rail welded (S-rail) and one rail with isolated joints (I-rail) which is used by the DC-track signalling circuit.
Isolated rails	No isolation at all	Yes, see item above.
Return conductor	See section A1.5.3.	See section A1.5.3.
Earth wire	On some lines, both sectioned and interconnected (typical distance between connections to rail is 3 km) exist	See section A1.5.3.
Track transformers	No	No
Other characteristics	No	No
Earth resistivity [Ωm] Wet soil: 20-200 Humus/clay: 50-200 Wet sand: 100-300 Dry sand: 1000-50000 Mountains: 1000-10000	Railway lines are very often build on bedrock ground or rocky ground. A usable value is 2500 Ωm.	Earth resistivity is high. A usable value is 2500 Ωm.
Future modifications plans	No information available.	None

A1.5.6Booster transformers

Data	Norway	Sweden
Booster transformers exist	Yes	Yes, on all lines except AT-
		system lines.
Transformer power rating	min: 33 (380 A, 87 V)	500 A Booster transformer:
[kVA]	typ: 55 (680 A, 92 V)	158 kVA (500 A, 316 V,
	max: 95 (800 A, 118 V)	800 A for 1 hour).
		Older booster transformers
		of 300 A exists.
Short circuit impedance [%]	min: $2.7 + j 2.5$	500 A Booster transformer:
	typ: $8.4 + j 22.3$	typ: 3.86 + j 10.3
		typ: 11 (absolute value)
Distance between booster	min: 2	typ: 5.6
transformers [km]	typ: 3	
	max: 20	
Specific contact line system	typ: 0.013	See section A1.5.9.
impedance [Ohm/km]		
Modifications planned in	No information available.	3-windings boosters may be
future		introduced if ATBT-systems
		are introduced.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A18 of A41

Data	Norway	Sweden
Neutral sections exist	Yes	Yes
Neutral part is	See clause 6.2 in the report.	Normally floating
Location	See clause 6.2 in the report.	At substations and switching posts.
May be shunted	See clause 6.2 in the report.	Yes, normally to earth, but to contact line voltage exists.
Length [m]	min: 40 typ: 90 max: 350	min:2 at stationsmin:60typ:180max:180
Concept for emergency supply (e.g. one substation out of order)	No information available.	Converter stations are design for outage of one converter unit with out influencing the traffic.
Modifications planned in future	Neutral sections of 402 m are planned for future.	None

A1.5.7Neutral sections/Phase gaps

A1.5.8Interaction AC/DC railways

Data	Norway	Sweden
Infrastructure segment lies	Yes	Yes
adjacent to DC-		
railways/tramways		
Special arrangements (such	No, not as we know	No
as DC train supply with		
current return through rails		
on AC lines)		
Description	Grefsen station (750 V DC	Trams lines (750 V DC)
	parallel and 600 V DC	parallel to railway lines in
	crossing)	Gothenburg.
	Bryn station (750 V DC	Underground/subway lines
	crossing)	(750 V DC) parallel to
	Trondheim station (600 V	railway lines in Stockholm.
	DC crossing)	
Modifications planned in	Lysaker station – tramway	No
future	face to face planned	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A19 of A41

Data	Norway	Sweden
Line impedance , single track	min: 0.092+j0.106	min: 0.13+j0.16
lines [Ohm/km] including	typ: 0.190+j0.210	typ: 0.21+j0.20
BT	max: 0.233+j0.228	max: 0.30+j0.23
Line impedance, double	min: 0.160+j0.180	Not calculated.
track lines [Ohm/km]	typ:	
including BT	max: 0.218+j0.188	
Specific capacitance, single	min: 9	typical for booster
track [nF/km] (caternary–	typ:	transformer lines:
earth)	max: 17	8.8 - 11.1
Lowest resonance frequency	typ: 800 Hz global	typ: 800 Hz global
(contact line network) double	typ: 450 Hz local	typ: 450 Hz local
side feeding [Hz]		
Lowest resonance frequency	typ: 450 Hz local	typ: 450 Hz local
(contact line network) single		
side feeding [Hz]		
Other interesting values	Earth resistivity is high.	Earth resistivity is high. A
		usable value is 2500 Ω m.
Modifications planned in	No information available.	No
future		

A1.5.9Numerical values BT system

A1.5.10 Numerical values AT system

Data	Norway	Sweden
Fixed impedance at feeding	Not yet decided or	min: 0.189+j0.343
or starting points [Ohm]	calculated.	typ:
		max: 0.468+j0.755
		(see note below the table)
Line impedance on single	Not yet decided or	min: 0.0335+j0.031
line track [Ohm/km]	calculated.	typ:
		max: 0.0715+j0.066
		(linear approximations
		including AT's)
Line impedance on double	Not yet decided or	Not calculated.
line track [Ohm/km]	calculated.	
Specific capacitance, single	Not yet decided or	
track [nF/km] (caternary–	calculated.	typ: 11.9 – 13.5
earth)		
Specific capacitance, double	Not yet decided or	Not calculated.
track [nF/km]	calculated.	
(caternary–earth)		
Lowest resonance frequency	typ: 450 Hz global	typ: 400 Hz global
(contact line network) double	typ: 350 Hz local	typ: 250 Hz local

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A20 of A41

side feeding [Hz]		
Lowest resonance frequency	typ: 200 Hz local	typ: <200 Hz local
(contact line network) single		
side feeding [Hz]		
Modifications planned in	Exact system design not	No
future	decided yet	

NOTE that the values for AT-systems in Sweden regards single track systems. Furthermore note that the AT-system impedances are linear approximations of the AT-system impedances with the intension to get values which can easily be used in simulation programs and for calculations of settings of relay protections. The fixed impedance corresponds approximately to the level of the zero sequence impedance of the system. This impedance shall be placed as a fixed impedance at both ends of the system in case of a AT-system fed from both ends and at the feeding end in case of a single end fed system. The impedance per km corresponds approximately to the positive sequence impedance.

A1.6 Signalling equipment

Data	Norway	Sweden
DC track circuits	Only on non-electrified lines and at one electrified railway station (Filipstad)	DC track signalling circuits exists on nearly the whole network. None existing only on none electrified lines.
High voltage impulse	Do not exist	Do not exist
Low frequency (25-275 Hz)	Exist on most of the electrified lines. 95 and 105 Hz only, uncoded.	Do not exist
Reed frequency (275- 1000Hz)	Do not exist	Do not exist
Lower audio frequency (1-4 kHz)	Exist on a small part of the network. Bombardier TI 21 (1.5 - 2.6 kHz), digital processor based and not transmitter signal coded.	Do not exist
Upper audio frequency (4-20 kHz)	Exist on a part (110 km) of network. Siemens FTGS (4.7-16.5 kHz), digital and transmitter signal coded.	Do not exist
Other	Do not exist	Train radio or radio blocking of trains on some none electrified low traffic lines
Modifications planned in future	No information available.	More radio block systems are planned for low traffic

A1.6.1 Track circuits

 $\label{eq:construction} Requirements \mbox{ on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure} and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A21 of A41 \\$

lines.		
		lines.

A1.6.2Axle counters

Data	Norway	Sweden
Mechanical	Do not exist	No
Electro-magnetic	Do not exist	Yes, but not used as signalling equipment They are placed together with axle box heating locked braking detectors
Electronic	Do not exist, but are being tested	No
Others	Do not exist	No
Modifications planned in future	Are planned for future use	None

A1.6.3 Automatic train protection (ATP) and automatic train control (ATC)

Data	Norway	Sweden
ETCS/ERTMS level 1	Does not exist	Does not exist.
ETCS/ERTMS level 2	Does not exist	Introduced on the
		Botniabanan
ETCS/ERTMS level 3	Does not exist	Does not exist.
National system(s)	"ATC" used in nearly the	"ATC" used in nearly the
	whole network.	whole network,
	EBICAB700 manufactured	manufactured by ATSS and
	by ATSS and Bombardier	Bombardier.
		Radio blocking of trains or
		manual train blocking used
		on some none electrified
		low traffic lines.
Modifications planned in	Long term strategy is	Ongoing project for
future	ERTMS level 2	introducing ERTMS level 2
		(the lines Malmö-
		Stockholm-Sundsvall are
		planed for 2010-2015)

A1.6.4Interference monitors

Data	Norway	Sweden
Philosophy of application	Monitors recommended.	DC-current monitor on new
	Monitors needed if safety	electrical traction vehicles is
	case can not be fulfilled	required.
	otherwise	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A22 of A41

Purpose	Monitored frequencies: 95	To monitor the DC-
	and 105 Hz.	component, a component
	Trip level 2 A rms.	which can have an influence
	Filter characteristics ± 3 Hz.	on the track signalling
	Response time 1 sec.	circuits.
Type(s) in service	95 and 105 Hz monitor for	DC-monitors are in
	warning and disconnection	operation on some new
	of main circuit breaker.	vehicles.
Modifications planned in	No information available.	None
future		

A1.6.5Interference limits

Norway	Sweden
See section 5.2 and 5.4 in the report.	Limits on DC-components and psophometric currents, see section 5.2 and 5.4 in the report
	Norway See section 5.2 and 5.4 in the report.

A1.6.6Data transmission and remote control systems

Data	Norway	Sweden
System(s)	Various communication	Various communication
	systems exists, such as PCM	systems exists, such as PCM
	(puls code modulation, BF	(puls code modulation, BF
	(frequency carrier), etc, on	(frequency carrier), ADSL,
	Cu-cable. Also ordinary	etc, on Cu-cable. Also
	telephone lines on Cu-cables	ordinary telephone lines on
	excists. Opto-	Cu-cables exists. Opto-
	communication is the	communication is the
	dominating transmission for	dominating transmission for
	long distances	long distances
	communication.	communication.
	GSM-R is being introduced	Transmission used for
	in the whole country.	SCADA-systems are
		ELCOM, X25, RP570 and
		more. At the moment IEC
		870-5-104 (on TCP/IP) is
		introduced.
		GSM-R is being introduced
		in the whole country.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A23 of A41

A1.7 Operational conditions

A1.7.1 Line frequency

See section 6.1.2.1 in the report.

A1.7.2Line voltage RMS value

See section 6.1.1.1 in the report.

Based on simulation in SIMPOW® TRACFEED® the figures below show a typical statistical distribution of the fundamental voltage at the pantograph of a vehicle in Norway. The values can be used as a fairly good approximation also for Sweden.

The information is based on 1-second values (mean values during one second) for a 35 different trains considered as representative of the operation to day. Vehicle and line vary and the trains are divided and aggregated into the following groups:

- Freight trains on long distance lines, normally considered as weak lines (Bergen line, Dovre line, Sørland line and Ofoten line).
- Passenger trains on long distance lines, normally considered as weak lines (Bergen line, Dovre line, Sørland line and Ofoten line).
- Passenger trains in Oslo area, also including the Gjøvik line, Østfold line and the Vestfold line. The Olso area is normally considered as relatively stiff compared to long distance lines.

The voltages shown below are simulated for traction, coasting and braking mode, and includes stops at stations between start and stop.

Note that this figures show an overall distribution. For shorter time intervals the voltage distribution for a single train deviates from the figures shown due to sections of lines with lower voltage quality.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A24 of A41

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A25 of A41

A1.7.3Line voltage spectrum

Data	Norway	Sweden	
Sub-harmonics or regular	Yes, see clause 6.5.1 in the	Yes, see clause 6.5.1 in the	
frequency variations occur	report.	report.	
Line voltage content with	Significant to very large,	Significant to very large,	
harmonics up to 1000 Hz	higher harmonic orders do	higher harmonic orders do	
	occur but are not significant,	occur but are not significant,	
	see section 6.1.3.1 in the	see section 6.1.3.1 in the	
	report.	report.	
Line voltage content with	Very low, no influence on	Very low, no influence on	
harmonics 1000-3000 Hz	vehicle known from earlier	vehicle known from earlier	
	tests	tests, so far.	
Typical spectra	See section 6.1.3.1 in the	See section 6.1.3.1 in the	
	report.	report.	

The figure below can be regarded as a typical statistical distribution of the line voltage harmonics for Norway and Sweden. (The values of the figure below are based on recordings made during tests with a locomotive on the Borlänge-Ludvika/Krylbo-Frövi-Eskilstuna line sections in Central Sweden, October 2005. Recordings and analysis by L. Buhrkall.)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A26 of A41

Typical distribution of line voltage interference components, measured in Central Sweden. PLEASE NOTICE: The curves showing the distribution of the fundamental 16 2/3 Hz voltage components are not typical for low voltages at weak supply.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A27 of A41

A1.7.4 Regenerative brake

See clause 6.8 in the report.

A1.7.5 Power factor

See clause 6.3 in the report.

A1.7.6Earthing

Data	Norway	Sweden
Earthing principles	The midpoint of the 2x27.5	The 132 kV system has
	kV high transmission line is	directly earthed midpoints in
	directly earthed.	the 2-phase system (2x66
		kV). AT-systems (2x15 kV)
		have directly earthed
		midpoints.

A1.7.7Traffic information/characterisation

Data	Norway	Sweden	
City area	Train density equal to line	Train density equal to line	
	capacity	capacity	
Suburban area	Train density equal to line	Train density equal to line	
	capacity	capacity	
Long distance lines	0-6 trains per feeding	Some lines (south from	
	distance depending on	Storvik and south from	
	traffic. In high load periods	Hallsberg to Mjölby has	
	up to or even higher than	train density equal to line	
	line capacity.	capacity. Otherwise 0-6	
		trains per feeding distance.	

See respective Network Statement.

A1.7.8Network operation

Data	Norway	Sweden
Case	The network is normally	Single feeding of lines
	interconnected with adapted	during maintenance or fault
	feeding capacity. Sectioning	conditions may occur
	of contact line due to	resulting in very high
	maintenance or failure often	impedances at the far end
	occur. Maintenance of	from feeding point and
	converter stations may result	lower resonance
	in reduced feeding capacity.	frequencies. Other cases not
	Sectioning and reduced	applicable for vehicle
	feeding capacity results in	compatibility
	lower resonance frequencies	

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A28 of A41

A1.7.9Infrastructure classes

Expressions used in table below correspond to the definitions in EN50 163 and EN 50388. For more details see corresponding chapters in the report. Classification of infrastructure is to be given in respective Network Statement, but classes written in *italic* are most used.

Data	Norway	Sweden
Line voltage levels	V1: according to EN 50163:2004	$V1: U_{max2} = 17500 V$
	V2: U_{min2} =10000 V and U_{min1} =11000 V	
Maximum current limitation	C1: $I_{max} = 900 \text{ A}$	Max current per train is 900 A in tractive mode. Higher
	C2: $I_{max} = 700 \text{ A}$ C3: $I_{max} = 450 \text{ A}$	be accepted.
Regenerative braking	B1: I _{max}	No classes defined.
	B2: 10 MW / 600 A	
	B3: 8 MW / 500 A	
	B4: 5 MW / 300 A	
Low frequency power oscillations	Under investigation.	Under investigation.

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A29 of A41

A1.8 Existing electrical vehicles

Passive filters refers to HV-filters or filters on a separate winding of the transformer, not filters on the DC-link in case of an inverter vehicle.

Active behaviour refers to if the control system compensate for harmonics in the traction current in order to draw a sinusoidal current

Operator	Vehicle (no of vehicles in op. i brackets.)	in	Туре	Passive filter	Active behaviour
Hector Rail AB (pre- liminary accepted)	BR 441 ((DB BR 189)	(2)	Inverter	Yes	up to 83 1/3 Hz
Hector Rail AB	BR141 (3 (ÖBB Class 101	3) .2)	Inverter	No	up to 250 Hz
Hector Rail AB	BR142 (6 (ÖBB Class 114	6) 2)	Tap changer	No	No
CargoNet AS, Hector Rail AB, GreenCargoAB	CE119/BR241/H 185.2 (20- (DB BR185.2)	3R 30)	Inverter	Yes	up to 83 1/3 Hz
MTAB	Dm 3 (1	19)	Tap changer	No	No
MTAB, TKAB	Da (:	5)	Tap changer	No	No
Raillion AS	EG 3100 (1	13)	Inverter	Yes	Yes, up to unknown freq.
NSB AS, Ofotbanen AS	El 13 (5	5)	Tap changer	No	No
CargoNet AS	El 14 (3	31)	Tap changer	No	No
Hector Rail AB	El 15 / BR 161 ((6)	Tap changer, diode rectifier	No	No
CargoNet AS, TKAB, TGOJ	El 16 (1	17)	Phase angle control	Yes	No
NSB AS	El 17 (1	10)	Inverter	Yes	Unknown
NSB AS	El 18 (2	22)	Inverter	No	up to 83 1/3 Hz
MTAB	IORE (2x9=2	18)	Inverter	Yes	up to 83 1/3 Hz
TGOJ	MA (3	32)	Tap changer	No	No
SJ AB, Green Cargo AB, TÅGAB, TGOJ	Rc 1 to Rc 7 (3:	56)	Phase angle control	Yes	No
Green Cargo AB	Rm (6	6)	Phase angle control	Yes	No

A1.8.1 Electrical locomotives in Norway and Sweden

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A30 of A41

Ofotbanen AS	Class 68 (3)	Tap changer	No	No
NSB AS	Class 69 a-g (77)	Phase angle control	a-c: yes d-g: no	No
NSB AS	Class 70 (16) ("IC 70")	Inverter	No	up to about 300 Hz
Flytoget AS	Class 71 (16) ("FPT")	Inverter	No	up to about 850 Hz
NSB AS	Class 72 (36)	Inverter	No	Unknown
NSB AS	Class 73 (22) Identical to class 71	Inverter	No	up to about 850 Hz
SL	X1 (94)	Phase angle control	Yes	No
SJ	X2 (43) ("X 2000")	Inverter	Yes	up to 216 2/3 Hz
Arlanda Banan AB	X3 (7) ("Arlanda Express")	Inverter	No	unknown
SJ and SL and other regional operators	X10 to X14 (137)	Phase angle control	yes	No
SJ, TKAB	X20 to X23 (3)	Tap changer, diode rectifier	unknown	No
SJ / DSB	X31-32 (3x53) ("Öresund train")	Inverter	yes	unknown
SJ	X40 (2x16 and 3x27 ordered)	Inverter	no	up to 150 Hz
SJ and regional operators	X50-54 (50) ("Regina")	Inverter	yes	up to 83 1/3 Hz
SL	X60 (71 ordered)	Inverter	no	up to 150 Hz

A1.8.2 Electrical multiple units in Norway and Sweden

(for a good general overview of vehicles in NO and SE see also <u>www.jarnvag.net</u>)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A31 of A41

A2 APPENDIX 2: NETWORK MAP NORWAY

(Applies to "Energy" only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A32 of A41

A3 APPENDIX 3: NETWORK MAP SWEDEN

(Applies to Sweden only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A33 of A41

A4 APPENDIX 4: ADDITIONAL INFORMATION FOR STABILITY STUDIES

(Applies to "Energy" only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A34 of A41

A5 APPENDIX 5: DYNAMIC BEHAVIOUR OF ROTARY CONVERTERS

(Applies to "Energy" only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A35 of A41

A6 APPENDIX 6: TYPICAL CROSS SECTION OF A BOOSTER TRANSFORMER LINE IN SWEDEN

(Applies to Sweden only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A36 of A41

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A37 of A41

A7 APPENDIX 7: CROSS SECTION OF EXISTING AT-SYSTEM LINES IN SWEDEN

(Applies to Sweden only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A38 of A41

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A39 of A41

A8 APPENDIX 8: CROSS SECTION OF NEW STANDARD FOR AT-SYSTEMS LINES IN SWEDEN

(Applies to Sweden only)

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A40 of A41

A9 APPENDIX 9 : PSOPHOMETRIC WEIGHTING FACTORS ACCORDING TO ITU-T

Frequency	Weighting factor, P _{fn}
[Hz]	
16,66	0,056
50	0,71
100	6,91
150	35,5
200	89,1
250	178
300	295
350	376
400	484
450	582
500	661
550	733
600	794
650	851
700	902
750	955
800	1 000
850	1 035
900	1 072
950	1109
1 000	1 122
1 050	1 109
1 100	1 072
1 150	1 035
1 200	1 000
1 250	977
1 300	955
1 350	928
1 400	905
1 450	881
1 500	861
1 550	842
1 600	824
1 650	807
1 700	791
1 750	775
1 800	760
1 850	745
1 900	732
1 950	720
2 000	708
2 050	698

Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles. NES Document TS02 - APPENDICIES Page A41 of A41

Frequency	Weighting factor, P_{fn}
[Hz]	
2 100	689
2 150	679
2 200	670
2 250	661
2 300	652
2 350	643
2 400	634
2 450	626
2 500	617
2 550	607
2 600	598
2 650	590
2 700	580
2 750	571
2 800	562
2 850	553
2 900	543
2 950	534
3 000	525
3 100	501
3 200	473
3 300	444
3 400	412
3 500	376
3 600	335
3 700	292
3 800	251
3 900	214
4 000	178
4 100	144,5
4 200	116
4 300	92,3
4 400	72,4
4 500	56,2
4 600	43,7
4 700	33,9
4 800	26,3
5 000	20,4
> 5 000	15,9
> 6 000	7,1